！

地 ！ا

$$
\begin{aligned}
& \text { بخريد. }
\end{aligned}
$$

و اگر نميتوانيد حداقل دعايى خيرى در حقشون كنيد كه واقعاً استاد زحمت كشى هستى ايتند. با تشا تشكر از استاد عزيزم، جناب آقاى آقا ياسر احمدى فولاد الادى كه اين كتاب فوق العاده را نگّاشته اند.

$$
\begin{aligned}
& \text { المپپيادهای كامپيوتر ايران }
\end{aligned}
$$

006^{6}

$$
\begin{gathered}
\underbrace{\circ(n}_{0} \\
\left(\wedge^{\circ}\right. \\
\wedge 0)
\end{gathered}
$$

بيش

به نامش

سرگرمىهاى رياضى، با هر اندازه آشنايىى يبشين، سودمند باشد.

مرحلدى دوم است.
 توجه داشت كه هر مساله مىتواند یاسخى با بهكارگيرىى شيوميى گوناگون از شيونى ارايه شده داشته باشد.

در حل مشخص شده و تصحيحهايى بر آنها انجام گرقته اند. به اين سان بيش از 1 ا مورد تصحيح رنخ داد.

هدا جهانشاهلو	,
ياسر احمدى فولادى	فراهِقى جلد:
سوده احمدى فولادى	\%رور
تيراثه زارع كاريزى	
هدا جهانشاهو	\%
も D Ooo	Uluat
-	1,450)

 rasta@ee.sharif .edu ed

المپيادهاى كاميِيوتر ايران

با بيش از 1 ا مسالـ

مرحلم هاك دوم، از آغاز تا كنون

نمادها

را اني جا ليستى از نمادهايى آورده شده است كه شايد براى برخى از خوانندگان كه هـمآن موضوعها را در

نام	د60
نقيض	$\neg p$
ياى انحصارى:	$p \oplus q$
لكاريتم دودويى: ${ }^{\text {ل/ }}$	$\lg x$
كف: $\max \{n \mid n \leqslant x, n \in \mathbb{Z}\}$	$\lfloor x\rfloor$
$\therefore \quad \min \{n \mid n \geqslant x, n \in \mathbb{Z}\}$:	$\lceil x\rceil$
مانده: x ¢	$x \bmod y$
n!/0! - n ! / 1 ! $+\cdots+(-1)^{n} n!/ n!$!	n_{i}
$m>0, n=k m, k \in \mathbb{Z}$ شمردن	$m \backslash n$
$\sum_{k=0}^{m} a_{k} b^{k}$ نمايش	$\left(a_{m} \ldots a_{0}\right)_{b}$
د ${ }^{\text {a }}$	$\left\langle a_{n}\right\rangle$
A كاردينال: شمار عضوهاى مجموعهى	\#A
$\{a \odot x \mid x \in A\}: \odot$	$a \odot A$
¢	$A \backslash B$

 ألي كولN كه خوانده مى شود، به كار برديم.

در بيان مسالهها حنظ امانت تا آنجا رخ داده است كه سجاوندى جز در عبارتهالى رياضى، و متن مسالهها جز در جاى هايیى كه با † مشخص شده اند، هيجّ تغييرى را نیذيرفته است. در شيوْى نوشتار وازگان به روشنى

 باسخدهى به آنها بوده است، نه ارايهى اصل شييوهى نوشتار.

 , كُتنار نيز همسو است. همهتحنين دكتر مير شمسالدين اديب سلطانى اين را روا مىداند.

 به اميد ييشرفت و شكفتگىى هر چهه بيشتر ايرانزمين. شايد گامى باشد در اين راه.
تهران، آبانماه

$$
4 \cos +i \rightarrow x-2
$$

فهرسـت گنجانيدهها

فهرست كنجانيدهها

$$
\begin{aligned}
& \text { |r| } \\
& \text { lo }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ITV يرسشهای نوبت دوم Y.1॰ } \\
& \text { یاسخهاى نوبت دوم آي }
\end{aligned}
$$

Ira \qquad

Irv	
179	یاسخهاى نوبت يكم
191	
Ifr	باسخهاى نوبت دوم

IfV \qquad IY مرحلهى دوم دوازدهمين المبياد

ها ياسخهاى نوبت يكم
IDV. . پیرسشهای نوبت دوم Y.IY
هإسخهاى نوبت دوم 181

180	r1
	VVI
	IVY پV.IT
	IVV ياسخهاى نوبت دوم
111	- فهرستها
	فAK فهرست يرسشى
	IAV فهرست گونهيى
	1^9 فهرست سختى

يكمين المپياد كامپيوتر مرحلمى دوم

هرسشهاى نوبت يكم
 مرحلهى دوم يكمين الميياد

 ماتريس صفر در نظر گرفته مىشود. يكى دنبالهى تيم
 يك آرايهى nتايى قرار دهد.

يك ماتريس 12 × 12 متشكل از اعداد صفر و يكى را در نظر بگيريد. هر سطر اين ماتريس را مىتوان به
 به دست میآيد. با تبديل اين عدد به مبناى 2 و در صورت لزوم افزايش ارقام از از سمت پیپ تا مىتوان به سطر ماتريس دست يافت.

 هر ماتريس 2×1 2 2 داخل آن را با شرايط زير به يك درايه تبديل كنيم. در صورتى كه تعداد درايههاى

 15، و مسالدى 9 داراى 20 امتياز بود.

سمت جی و بالا در نظر مىگيريم).

| برنامهيى بنويسيد كه 12 عدد صحيح نامنفىى كوحكتر از 4096 را از ورودى گرفته و با تبديل آنها به مبناى 2، به ترتيب سطرهاى يكى ماتريس 12 × 12 متشكل از صفر و يكى را توليد كند.

ب برنامهيى بنويسيد كد ماتريس حاصل از مرحلهى ا را 90 درجه دوران دهد. ب برنامهيى بنويسيد كه ماتريس حاصل از مرحلهى ا را فشرده كند.
program Problem1;
var
M, N, DS, DP, I: Word;
A, B, S: array [0..100] of Real;
P: array [0..200] of Real;
begin
$\operatorname{ReadLn}(N)$;
for I := 0 to N do
$\operatorname{ReadLn}(A[I])$;
$\operatorname{ReadLn}(M)$;
for I := 0 to M do
ReadLn(B[I]);
for $D S:=0$ to $N+\operatorname{Ord}(M>N) *(M-N)$ do $\{$ WiD\}
$\mathrm{S}[\mathrm{DS}]:=\mathrm{A}[\mathrm{DS}]+\mathrm{B}[\mathrm{DS}]$;
for $D P:=0$ to $M+N$ do $\{$ WiD $\}$
for $I:=0$ to $D P$ do
$P[D P]:=P[D P]+A[I] * B[D P-I]$
end.
Y برنامه را در زير داريم.
program Problem2;
var
N, I, J, K: Byte;
Tournament: array [1..100, 1..100] of Byte;
HamiltonianPath: array [1.100] of Byte;
begin
ReadLn(N);
for $I:=1$ to N do
for J := 1 to N do
ReadLn(Tournament[I, J]);

v 1.1 باسخهاى نوت يكم

begin
M[I, J] := C[I] and 1;
C[I] := C[I] shr 1
end

end.

program Problem3a

 varI, J: Byte;
M: array $[1 . .12,1.12]$ of $0 . .1$;
CM: array $[1 . .6,1.6]$ of $0 . .1$;

begin

for I := 1 to 6 do
for J := 1 to 6 do
CM[I,]] := Ord(M[I * 2-1,] * 2 - 1] +

$$
\begin{array}{lrr}
\text { M[I * } 2-1, J * 2 &]+ \\
M[I * 2 &] * 2 & 1]+ \\
M[I * 2 &] * &] ~>
\end{array}
$$

end
for I := 1 to N do
begin
HamiltonianPath[I] := I
for $]$:= 1 to I - 1 do
if Tournament[I, HamiltonianPath[J]] = I then
begin
for K := I - 1 downto J do
HamiltonianPath $[K+1]:=$ HamiltonianPath[K];
HamiltonianPath[J] := I;
Break
end \{if
end \{for\}
end.
program Problem3a;
var
I, J: Byte;
C: array [1..12] of Word;
M: array [1..12, 1..12] of 0..1;
begin
for I := 1 to 12 do
ReadLn(C[I])
for I := 1 to 12 do
for J := 12 downto 1 do
begin
$M[I, J]:=C[I]$ and 1 ;
end
end.
program Problem3a;
var
I, J: Byte;
C: array [1..12] of Word;
M: array $[1 . .12,1.12]$ of $0 . .1$;
begin
for $I:=1$ to 12 do ReadLn(C[I]);
for $I:=1$ to 12 do
for] := 12 downto 1 do

هرسشهاى نوبت دوم

مرحلهى دوم يكمين الميياد

يك الگوريتم غير بازگشتى، فقط با استفاده از عمل جمع، بنويسيد كه تعداد تركيبهاى مختلف m شا شی،

$$
\binom{n}{m}= \begin{cases}1 & n=m \text { or } m=0 \\ \binom{n-1}{m}+\binom{n-1}{m-1} & n>m\end{cases}
$$

برنامهيى براى يك بازى بين كامييوتر و كاربر (استفاده كنتده از كامييوتر) با شرايط زير بنويسيد:

 هر سوال (1) در بين آنها، یاسخ Y و در غير اين صورت یاسخ N N را وارد كند.
 آنگاه عدد مورد نظر كاربر مساوىى 5 است.

1357 Y
$\begin{array}{llll}2 & 3 & 6 & 7\end{array}$
$4567 \quad \mathrm{Y}$

يك صفحهى شترنج 8 × 8 را در نظر بگيريد. يك مهره در خانهى سمت هب وها وياين اين صفحه قرار دارد.

فقط مىتوان يا يكى خانه به سمت راست ويا يكى خانه به سمت بالا حركت داد برنامهيى بنويسيد كه كليهى مسيرهاى ممكن براى رسيدن اين مهره از خانهى شروع به خانهيى با مختصات

, هر حركت به سمت بالا با U U نشان داده مى مشود. هثال. در شكل مقابل يك مسير از خانهى شروع به خانهى (2,4) رسم شده است كه به صورت دنبالهى RUURU

Write(I, ' ')
ReadLn(C);
if $C=$ ' Y ' then
BIdx := (BIdx + EIdx + 1) shr 1
else if $C=$ ' N ' then
EIdx := (BIdx + EIdx + 1) shr 1-1 end; \{while\}
WriteLn(BIdx)
end.
program Problem6:
var
I, J, C, D: Byte;
S: array [1..16] of Byte:
T : string[16];

begin

ReadLn(I, J);
for $C:=1$ to I - 1 do
$\mathrm{S}[\mathrm{C}]:=\mathrm{C}$;
T[0] := $\operatorname{Chr}(\mathrm{I}+\mathrm{J}-2)$;
repeat
FillChar(T[1], Length(T), 'U');
for $C:=1$ to I - 1 do
$T[S[C]]:=$ ' ${ }^{\prime}$;
C := I - 1;
WriteLn(T):
while $(C>0)$ and $(S[C]=J+C-1)$ do Dec(C);
if $C>0$ then

begin

Inc(S[C]);
for $D:=C+1$ to $I-1$ do
$S[D]:=S[D-1]+1$
end $\{i f\}$
until $C=0$
end.

يرسشهاى نوبت يكم
 مرحلهى دوم دومين الميياد

居

 |را الشخص كند.

I اريست با دو سكهى زيرش در تماس باشد. (براى 1 تا 4 سكه ترتيب قرار گرفتن سكهها و تعداد حالات .

$\mathrm{n}=1$	$n=2$	$n=$	$n=4$
\bigcirc	∞	000 \&	000008
1	1 حالت	2	3

 $S_{n}=S_{n-1}+S_{n-2}$
 n سكه را در دو رديف (با شرايط اخير) حساب كرده بر حسب n بنويسيد.

- وقت براى آزمون نوبت يكم r، و براى آزمون نوت دوم ساعت بود.
! مسالهى \ داراى 15، مسالهى 「 داراى 15، مسالدى ب داراى 20، مسالدى Y داراى 15، مسالدى Q داراى

$$
\text { 15، و مسالدى } 9 \text { داراى } 20 \text { امتياز بود. }
$$

یاسخهاى نوبت يكم
 مرحلهى دوم دومين المهياد

 ارباممى خواسته شده در زير آمده است.
program Problem1;
var
N, P, R: Word;
C: array [0..10000] of Word;

begin

ReadLn(N);
for $R:=1$ to N do
$C[R]:=R$;
P := 1;
for $R:=N$ downto 1 do

begin

$P:=P \bmod R+1$;
WriteLn(C[P]);
Move (C[P + 1], C[P], SizeOf(C[P]) * (R - P))
end \{for\}
end.
|
 سكه متناظر ساخت. از اين رو برابرىى گقته شده را داريمر داريم.

$n=6$
000000000800080080008000000

$$
7 \text { حالت }
$$

 يك بازى با قانون زير تعريف مى دكنيه:

حالت مىگوييم كه بازى جواب دارد.

 ب ثابت كنيد كه تنها حالت ممكن براى جواب داشتن بازي درا درا دالى حالت ا الست. در شكل زير يك مرحله از يك بازى نشان داده شده است.

+	+	+	+
+	+	+	+
+	+	+	+
+	+	+	+
+	+	+	+

\rightarrow

+	+	+	+	+
+	+	+	-	+
+	+	+	-	-
+	+	+	+	+
+	+	+	+	+

یرسشهاى نويت دوم

مرحلهى دوم دومين الميياد

届

ارزاهفيى بنويسيد تا یس از دريافت ورودىها، شمارههاى دايرههاى انتخاب شده را به ترتيب از چیپ به رارست بنويسد. در صورتى كه مساله بيش از يك جـواب داشته باشد، يكى جواب كافى است. اگر مساله چواب ندارد، آن را نيز مشخص نماييد.

 ترتيبهاى مختلف براى انجام اين ضرب را به دست آوريم. اين ترتيبها را را مىتوان با استفاده از يرانتز نشان داد. فرض كنيد TT تعداد حالات پرانتزگذذارىى اين ضرب باشد و و ترتيبه مثلى مورد نظر به
قرار زير اند:
$M_{1} \times\left(\left(M_{2} \times\left(M_{3} \times M_{4}\right)\right)\right.$
$M_{1} \times\left(\left(M_{2} \times M_{3}\right) \times M_{4}\right)$
$\left(M_{1} \times M_{2}\right) \times\left(M_{3} \times M_{4}\right)$
$\left(M_{1} \times\left(M_{2} \times M_{3}\right)\right) \times M_{4}$
$\left(\left(M_{1} \times M_{2}\right) \times M_{3}\right) \times M_{4}$

$$
\begin{aligned}
1+\sum_{q=1}^{\left\lfloor\frac{n}{2}\right\rfloor} p-q & =1+\sum_{q=1}^{\left\lfloor\frac{n}{2}\right\rfloor} n-2 q \\
& =1+n\left\lfloor\frac{n}{2}\right\rfloor-\left\lfloor\frac{n}{2}\right\rfloor\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right) \\
& =1+\left\lfloor\frac{n}{2}\right\rfloor\left(\left\lceil\frac{n}{2}\right\rceil-1\right)
\end{aligned}
$$

|

\rightarrow

+	+	+	+	+
+	+	+	+	+
+	+	+	+	+
+	+	+	+	+
+	+	+	+	+

پّس به سادگى به هاسخ رسيده ايم.

ب با اگر '-' در خانهيى جز خانهى ميانى باشد، در دست پايين يكى از رنگگآميزىهاى

در خانههاى سياه جاى گرفته است. هر مربع در اين رنگآميزى شمار زوجى را از خانههاى سياه در بر
 علامتهاى '-' ناوردا است و همواره شمارى فرد علامت '-' در خانههاى سياه خواهد بود.

ياسخهاى نوت دوم

 مرحلهى دوم دومين المييياد| أه برنامـى ارايه شده در اين جا از مرتبهى نمايیى است وهمهى جایگشتهماى ممكن را از m دايره居

program Problem4;

var
F: Boolean;
L: Real;
S: array [1..100] of 0..1;
P: array [1..100] of Byte;
R: array [1..100] of Real;
function Projection(M: Byte): Real;
var
I: Byte;
S: Real;
begin
$S:=R[P[1]]+R[P[M]]$;
for $I:=1$ to $M-1$ do
$S:=S+2 * \operatorname{Sqrt}(R[P[I]] * R[P[I+1]])$
Projection := S
end; \{procedure Projection\}

ب برناههيى بنويسيد تا با دريافت Tn را در خروجى چاپ

تعريف ا. يكى درخت دودويى متششكل از تعدادى نقاط داخلى و تعدادى نقاط خارجى موسوم به گرهها مىباشد. از هر گره داخلى دو گره منشعب مى گردند (گره چیپ و گره راست) كه با لبههاى چیپ,

دودويیى زير را در نظر بخيريد:

ريشهى درخت مىباشد.

گرهما در مسير منهاى يكى است. طول مسير را با (lu Luان مىدهيم.

$$
\sum_{j=1}^{m} 2^{-l\left(u_{i}\right)}=1
$$

براى قسمت ب قرار دهيد:

procedure Permute(B, M, N : Byte);

$$
T_{n}=\sum_{p=1}^{n-1} T_{p} T_{n-1-p}
$$

به دست مى آيد.
ب يِيادهسازىى برنامه بسيار ساده است. آن را در زير داريم.
program Problem5:
var
M, N, I: Byte;
T : array [1..25] of Longint;
begin
ReadLn(N);
T[1] := 1;
for $M:=2$ to N do
for $I:=1$ to $N-1$ do Inc(T[M], T[I] * T[N - I]);
WriteLn(T[N])
end.

 جاىگذارىى
ب مشخص نيست n حه مى باشد. • در واقع n شمار گرههاى درونى است.

$$
\text { وكاسته شدن LL(v)، و در سوى راست افزوده شدن L(v) + } 2 \text { را داريم. يس حكم برقرار مىگردد. }
$$

var
I: Byte;

begin

if not F and $(B=M+1)$ and (Projection $(M)=L)$ then
begin
F:= True:
for I := 1 to M do
Write(' ', P[I])
end $\{i f\}$
else
for I := B to N do
begin
P[B] := S[I];
$\mathrm{S}[\mathrm{I}]:=\mathrm{S}[\mathrm{B}]$;
Permute $(B+1, M, N)$;
S[I] := P[B]
end \{for\}
end; \{procedure Permute\}
procedure Permutations(N: Byte);
var
I: Byte;
begin
for $I:=1$ to N do
S[I] := I
for $I:=1$ to N do
Permute (1, I, N)
end: \{procedure Permutations\}
var
I, M: Byte;
begin
$\operatorname{ReadLn}(M, L)$;
for $I:=1$ to M do
ReadLn(R[I]);
Permutations (M) ;
if not F then
WriteLn('No answer!')
end.

- ضرب نخست ارايه شده در صورت مساله شمار يرانتزهاى نادرستى دارد.

F

سـومين المهياد كامبيوتر
مرحلمى دوم

هرسشهاى نوبت يكم

مرحلدى دوم سومين الميياد

بر روى صفحهيى تعداد 3n نقطه وجود دارد كه هيج سه تايى از آنها بر روى يى خط خط راست قرار ندارند.
 ميگويبم اگر هر يكى در بيرون ديخرى قرار گرفته باشد و رئوس و اضلاع آنها هيّج برخوردى با با يكديخر نداشته باشند.

 ب نشان دهيد كه ينج عدد سكه را مىتوان با حد اكثر هفت بار وزن كردن مرتب كرد. يك rr خروجى

 مرتب كنده با جهار ورودى را نشان مىدهد:

$$
\text { 15, و مسالدى } 9 \text { داراى } 25 \text { امتياز بود. }
$$

يك مدار مرتب كنندمى 8تايى را در شكل زير مىبينيد:

| حدس بزنيد كه يك مدار مرتب كنندمى nتايیى حد اقل بايد شامل چند زوجرديف باشد و تعداد كل مقايسه كنندههاى آن را به دست آوريد. در اين قسمت اثبات للزم نيست.

 ورودىهاى صفر و يك به طور كامل اثبات نماييد. براى دريافت بخشى از نمرهى اين قسمت مىتوانيد آن را براى n = 8 ثابت كنيد.

شمارْى ورودى

اني هدار شامل 4 رديف و 2 عدد زوجرديف مى باشد. نحوهى كار يكى مدار مرتب كننده به اين صورت است
 با هم عدل مى منتد. در ابتداى مرحلهى اول اعداد بر روى خطوط ورودى قرار دارند. يس از تعداد مراحلى Aارار با تعداد رديفها اعداد به صورت مرتب در خروجى ظاهر مىشوند.
لهو ی كار مدار مرتب كنندمى فوق براى اعداد ورودىى 3 و 2 و 4 و 1 به صورت زير است:

ابتداى مرحلهى 1

انتهاى مرحلدى 2

انتهاى مرحلهى 4
شيك مدار مرتب كنتدهى nتايیى داراى n خط با شمارههاى 1 تا n است كه رديفهاى شماره فرد شامل
 kik

ياسخهاى نوبت يكم
مرحلهى دوم سومين الميياد

خواسته شده هستند.
r r
 مىسنجيم. اگر سنگينتر بود، سنجش آن را با 3 و اگر سبكتر بود، سنجش را با با 1 انجام مىدهيهيم. به اين سان جاى سكهى 4 نيز يس از سننجش 5م مشخص مىشود.

 سنجش ييش رو دارد. باز 2 سنجش براى جاىگيرى بس است.

 سنجشگر يك مرتب كنندهى nتايى است.

هرسش هاى نوبت دوم
 مرحلهى دوم سومين المهياد

|

 انتخاب اين نمايندهها حد اقل به n2 2^{n} حالت مختلف امكانيذير است. فرض كنيد n يك عدد طبيعىى بزرگتر از يك باشد. ثابت كثيد براى $k=\left\lceil 3\left(\frac{3}{2}\right)^{n-2}\right\rceil$

> دنبالهى

- $A_{i} \subseteq\{1,2, \ldots, n\} \quad ; \quad A_{i} \neq A_{j}$
- $\left|A_{i} \triangle A_{j}\right|=1 \Longleftrightarrow|i-j|=1, \quad 1 \leqslant i, j \leqslant n$
 نمايانگر كوحّكترين عدد صحيح ناكمتر از x است.
مثال. در حالت n=3 خـواهيم ديم داشت k=5 و دنبالمى مورد نظر مىتواند به صورت زير باشد:

$$
A_{1}=\{ \}, A_{2}=\{1\}, A_{3}=\{1,2\}, A_{4}=\{1,2,3\}, A_{5}=\{2,3\}
$$

(راهنمايى: مىتوانيد از استقرا استفاده نماييد).
 $\stackrel{9}{48}$

 يكم تغييرى را در كاركرد تكهى هاييين خط جداساز يس از رديف يكم و از اين رو تغييبى را در يیى آمد پايانىى

 به سادگى انجام مىیذيرد.

صورت هستند كه "آيا x از k بزرگتر است؟" (k میتواند هر عدد طبيعىى بين 1 و n باشد و توسط

 | الگُوريتمى بنويسيد كه بافرض $1 / 2$ < عدد طبيعىى n و عدد حقيقىى r r را از ورودى دريافت

i سوال اول یاسخ دروغ دهد، عدد x را ري ايدا كند.
در مورد ايدهى الگُوريتم خود توضيح داده و متغيرهاى آن را معرفى نماييد.

Enter n: 10
Enter r: 0.25

IS $X>5$? YES
Is $X>8$? NO
IS $X>7$? NO
IS $X>6$? $Y E S$
IS $X>5$? NO
The number (x) is 7
ب را بيدا كند. (يعنى همواره بيش از يكى امكان براى عدد x موجود باشد).
rV پ.r.

ReadLn(R);
N := BinarySearch(1, $N, R)$;
WriteLn('The number (X) is ', N)
end.

مرحلهى دوم سومين الميياد

end: \{function Max\}

function Answer(K: LongInt; R: Real; var Q, L: LongInt): Boolean; var
Y, N: LongInt:
A: string;
begin
Y := 0;
N : $=0$;
while $\operatorname{Max}(Y, N)<=\operatorname{Trunc}(R *(Q+Y+N))-L$ do
begin
Write ('IS X > ', K, '? ');
ReadLn(A);
if $A=$ 'YES' then
$\operatorname{Inc}(\mathrm{Y})$
else if $A=$ ' $N O^{\prime}$ then
$\operatorname{Inc}(\mathrm{N})$
end; $\{w h i l e\}$
$\operatorname{Inc}(Q, Y+N)$;
$\operatorname{Inc}(L, Y+N-\operatorname{Max}(Y, N))$
Answer := $Y>N$
end; \{function Answer\}
function BinarySearch(BIdx, EIdx: LongInt; R: Real): LongInt; const

Q: LongInt $=0$;
L: LongInt = 0;
begin
while BIdx < EIdx do
if Answer((BIdx + EIdx) shr 1, R, Q, L) then \{EiD\}
BIdx := (BIdx $+\operatorname{EIdx})$ shr $1+1$
else
EIdx := (BIdx + EIdx) shr 1;
BinarySearch := BIdx
end; \{function BinarySearch\}

N: LongInt:
R: Real;

Write('Enter n: ');
ReadLn(N) ;
Write('Enter r: ');

تحمارمين المبياد كامييوتر مرحلىى دوم

پرسشهاى نوبت يكم
 مرحلهى دوم چهارمين الميياد

\$ ||3n/2-2 | 1 | بار وزن كردن مىتوان سبكترين و سنگينترين گلولهها را مشخص كرد. روش وزن كردن
 .
 (باشد و براى هر A - $1 \leqslant i \leqslant n$ داشته باشيم:
$T_{i} \subseteq T_{1+1}$
الهداد زنجيرههاى به طول n را محاسبن كنيد و ادعاى خود را اثبات نماييد.

الِ دو دسته را از هم تشخيص دهد.
هـ عنوان مثال، فرض كنيد A راستگو و B دروغگو است. در اين صورت، يرسشها و ياسخها مىتواند به رِيرت زير باشد:
يرسش از A: آيا B دروغگو است؟
برسش از A: آيا A A B دروغگو هستند؟ جواب: خير

$$
\text { برسش از B: آيا } 4 \text { = 2 2 } 2 \text { ؛ جواب: خير }
$$

برسش از B: آيا تو دروغگو هستى؟ جواب: خير

II تبهكار به اين جزيره فرار كرده اند. اين افراد تبهكار، درياسخ به هر هر يرسش هر طور كه بخواهند جواب "
 -
 10، مسالدى 9 داراى 10، مسالدى Y داراى 15، و مسالهى ^ داراى 15 امتياز بود.
t
. مدار [1373] در انتهاى الگُوريتم حه قدر است؟ حهرا؟
prosram Problem4;
var
a: array [0..1373] of longint
k, i, j, f: Integer;

begin

$a[0]:=0 ; a[1]:=1$;
for $k:=2$ to 1373 do
begin
$a[k]:=a[k-1] ;$
repeat
$a[k]:=a[k]+1$;
$\mathrm{F}:=1$;
for i := 1 to k - 1 do
for $j:=0$ to $i-1$ do
if $(a[k]-a[i]=a[i]-a[j])$ then
F := 0;
until ($F=1$);
end;
end.

بله يا خير) اين تبهكاران را شناسايى و بازداشت كند.

اطلاعى در مورد اين كه هر يكى از ساكنين اين جزيره از كدام كروه است، ندار اسارد.

ب ثابت كنيد كه درحالت كلى اگ, k > كارآگاه مىتواند افراد تبدكار را شناسايیى كند.

طورى به هرسشه هاى كارآگاه جواب دهند كه كارآگاه هيجگاه نتواند مطمئن شود كه يك فرد، تبدكار
 اين الگُوريتم با نماد a[i] نشان داده ايم.

K.r را مساویى 2 قرار بده.

C
م ما ما مساویى 1 قرار بده.
\&. برای هر $1 \leqslant i \leqslant k-1$ كه 1 اين مرحله را تكرار كن:

$$
\text { . } a[k]-a[i]=a[i]-a[j] \text { است، } \mathrm{F} \text { را مساویى } 0 \text { قرار بده. }
$$

اكر F=0 است، به مرحلهى (Y) برو.

. 9
الگوريتم فوق به زبان پاسكال در زير† نوشته شده است.
مساله به اين صورت است:
|
 دليل بياوريد.

ياسخهاى نوبت يكم
 مرحلهى دوم جهارمين الميياد

 به اين سان با افزايش 2 گُلوله به 3 سنجش يششتر نياز شد كه درستىى حكم را به دست میدهد. r r r r n+1 (n+1)k به به دست می آيد.

مساله تصريح نكرده است كه كارآكاه شنمار تبهكاران را مىداند. • اين اشكال نخست مساله مىباشد!

 سي، از فرد ديخرى يس از تشخيص گونهاش، دربارمى تبهكار بودن p مي يريسيم. ب

 ياسخ درست است. بر اين شيوه میتوان تبهكار بودن يا نبودن همهى افراد را در يريافت. n =k ما

 گونه با كمى تغيير به كار مىآيد. (جّدكونه؟)
|l

$$
\text { | داريم a[0. } 10]=(0,1,3,4,9,10,12,13,27,28,30) .
$$

 $. a[1373]=a\left[(10101011101)_{2}\right]=(10101011101)_{3}=66457$ ب $ب$

ه ه

 هيّج گاه دريى زمان بيشتر از 16 نفر مشترى در اين رستوران وجود نداريارد.

 t_{i}
 صفر شروع به كار مىكند. علاوه بر اين، مىدانيم كه اين دستگام نمىتوانواند در هر لحظه بيش از يـى كار كار را انجام دهد. اگر دستگاه در زمان

 ديركرد كل دستكاه برابر با بيشترين ديركرد كارها، يعنى،
 منظور الگُوريتمى بها اين صورت يبش نهاد داد داده شده است است

انجام مىدهد.

ثابت كنيد كه اين الگًوريتم درست عمل مىكند، يعنى اگر كارها را به اين ترتيب انجام دهيم، مقدار ديركرد كل دستگًاه حد اقل مىشود.

با ثور هر كَلوله از يكى كليد، وضعيت آن كليد تغيير مىكند.
 ($a_{i} \in\{1,2,3\}$ برای هر $)$ به عنوان دنبالهى ورودیى دست

 , $b_{i} \in\{A, B, C\}$ (براى هر i). دنبالهى b_{n} خارج شوند ,
 | الكُريتمى بنويسيد كه با دريافت يكى دنبالهى ورودى، دنبالهى خروجىى آن را ييدا كند.

ب الكُوريتمى بنويسيد كه با دريافت يكى دنبالهى هشخص كند كه آيا اين دنباله مىتواند خروجىى دستگاه باشد يا خير؟ الگوريتم شما بايد سريع

بابشد، يعنى امتحان كردن تمام حالتها مورد نظر نيست.
 است، میتوانيم با انجام عمل زير روى اين دسته كارت، يك دسته كارت ديگر كه در آن ترتيب قرار گرفتن كارتها تغيير كرده است، بسازيم: انيم ابتدا دسته كارت را به دو دسته كه اولى شامل n كارت اول ودومى شامل n كارت باقى مانده است، تقسيم

یاسخهاى نوبت دوم
 مرحلهى دوم چهارمين الميياد

0 اكُر نتوان هنين كرد، در هر يك از دستهى خانههاى竍

14 مشترى در رستوران هست و مىتوان يی جفت مشترىى جديد را در خانههاى خالى 13 جالىى 22 و 23 نشاند. (\$) مى مواهيم نشان دهيم آرايش افزايشى بر حسب d يك آرايش بهينه برای كمينه ساختن ديركرد دستگاه

الست. درستىى پايه براى n=2 با توجه به نابرابرى هاى زير روشن مىگردد:
$d_{1} \leqslant d_{2} \Longrightarrow \max \left\{t_{1}-d_{1}, t_{1}+t_{2}-d_{2}, 0\right\} \leqslant \max \left\{t_{2}-d_{2}, t_{1}+t_{2}-d_{1}, 0\right\}$.

| تكليف كليد y را به سادگى مىتوان مشخص كرد؛ ورودىى 2 را به ترتيب تبديل به ورودىهاى 1 و 3
مىكنيم.
program Problem7a;
var
I, 0: string;
C, X, Y, Z: Byte;

begin

ReadLn(I);
for $C:=1$ to Length(I) do
if $I[C]=$ ' 2 ' then
begin
$\mathrm{I}[\mathrm{C}]:=\operatorname{Chr}\left(\operatorname{Ord}\left({ }^{\prime} 1^{\prime}\right)+2\right.$ * Y$)$;

هr یاسخهاى نوبت دوم Y.Y

$$
\begin{gathered}
\mathrm{X}:=0 ; \\
\text { ' } \mathrm{C} \text { ': } \\
\mathrm{Z}:=1 \\
\text { end }\{\text { case }\} \\
\text { else } \\
\mathrm{X}:=0 \\
\text { else } \\
\mathrm{F}:=\text { True; } \\
{ }^{\prime} \mathrm{C} \text { ': } \mathrm{Z}=1 \text { then } \\
\text { if } Z:=0 \\
Z:=0 \\
\text { else } \\
\mathrm{F}:=\text { True; }
\end{gathered}
$$

end; \{case\}
end; \{for\}
WriteLn(not F)
end.
| كارتها میتوانند به دست بالا !n آرايش جاى گيرند. یس در دست بالا ! ! بر زدن به آرايشى تكرارى

$$
1 \text { - } 1 \text { نيز يكسان باشند. }
$$

 [12] آغازين جاى مىگيرند.
 ،m $\neq 2^{k+1}-1$ - 1 در جاىگاه $m \geqslant 2^{k}$ كارت a يس از s بار برزدن در جایگاه

 آغازين را نيز براى هر m برآورده مىسازد.

$Y:=1-Y$

$$
\text { end; }\{i f\}
$$

for $C:=1$ to Length(I) do

case I[C] of

'1':
begin

$$
O[C]:=\operatorname{Chr}\left(\operatorname{Ord}\left({ }^{\prime} A^{\prime}\right)+X\right) \text {; }
$$

$\mathrm{X}:=1-\mathrm{X}$
end; \{1\}
'3':
$O[C]:=\operatorname{Chr}\left(\operatorname{Ord}\left({ }^{\prime} B^{\prime}\right)+Z\right)$;
Z := $1-\mathrm{Z}$
end $\{3\}$
end; \{case\}
$0[\odot]:=I[\odot]$;
WriteLn(0)
end.
ب با program Problem7b;
var
0 : string;
C, X, Z: Byte;
F: Boolean;

begin

ReadLn(0);
for $C:=1$ to Length(0) do

begin

case $\mathrm{O}[\mathrm{C}]$ of
' A ':
if $X=0$ then
$x:=1$
else
F:=True;
'B':
if $(X=1)$ and $(Z=1)$ then
X := 0
else if $(X=0)$ and $(Z=0)$ then
Z := 1
else if $(X=1)$ and $(Z=0)$ then
if C Length (0) then
case $O[C+1]$ of
' A ', ' B ':

پنجمين المپیاد كامپيوتر مرحلمى دوم

يرسشهاى نوبت يكم
 مرحلهى دوم ینجمين الميياد

" n $n \times n \times n$
 تنها وقتى امكانيذير است كه n عددى زوج باشد. فرض كنيد كه يك ماشين در اختيار داريم كه مىتواند اين سه كار را بر روى كارتهايى كه بر روى هر يك از
آنها يك كلمه نوشته شده است انجام دهد:
" دو كارت كه بر روى آنها دو كلمه نوشته شده است را بغيرد ويى كارت توليد كند كه بر روى آن اين

> نوشته شده است.)

يك كارت كه بر روى آن كلمهى S نوشته شده است را دريافت كند و در خروجى كاري كاري ايجاد كاد كند كه بر روى آن aSb نوشته شده است. (براى مثال اگر بر روى كارت ورودى كلمهى aba نوشته رئه شده

كلمهى abbaba نوشته شده باشد.
 است را توليد كرد، اگر و فقط اگر اين كلمه تنها از a و b تشكيل شده باشد و تعداد aهاى آن

كه به ترتيب مشخصى قرار گرفته اند. اين ماشين حساب تنها سه نوع دستور را قبول مىكند. اين سه نوع دستور عبارت اند از: . مىكند. يس از اجراى اين دستور، ماشين دستور بعدى را اجرا مى الـند. (n يك عدد صحيح بين 1 تا 4 است): اگر مقدار حافظهى شمارهى n مساوىى صفر باشد،

 بعدى صرف نظر كرده و دستور بعد از آن را الجرا مى الـند.

 شود وجود داشته باشد، ادامه مىيابد. براى مثال اين برنامه را در نظر بـي بيريد:

D 2	
T 2	
T	-2
D 1	
T 3	
I 2	
T -3	

اين برنامه ابتدا حافظهى شمارهى 2 را یاك مىكند و سیس مقدار حافظهى شمارهى 1 را در حافظهى
 اجرای دستور 3 T تمام مىشود؛ چحون دستورى كه بايد اجرا شود وجود ندارد. | برنامهى زير را در نظر بگيريد:

برابر تعداد bهاى آن باشد.

بك ساختمان چهارطبقه به شكل عجيبى ساخته شده است. طبقات با شمارههاى صفر (همكف) تا 3

شنكل زير به اتاقهاى طبقهى پايين راه دارند.

 مى شود كه هر فرد با دريافت توپ و تتها بر اساس شمارْى اتاق و شمارْى طبقهيى كه در آن قرار دارد

اثبات كنيد كه الگوريتم شما درست عمل مىكند.

رِّ ثابت كنيد كه مسير توپ در بند فوق براى هر i و ز يكتا است.

 اتاقها همگى بر اساس الگوريتم بند فوق عمل كنند، تويى كه بر روى آن شمارْى i نوشته شده است

يك اتاق نمىشود.

 عدد وجود ندارد). اين ماشين حساب مىتواند يك برنامه را اجرا كند. هر برنامه شامل تعدادى دستور است

ياسخهاى نوت يكم
 مرحلدى دوم ينجمين الميياد

بيان مساله "تتها اگگ" بوده است. در واقع مساله درست بيان نشده و "اگگ" را نخواسته است.
| به سادگى وازه ساخته مىشود.

 را به دست دهد. تناقض! به اين سان درستىى "تنها اگر" نشان داده شد.

 اگر W به گونهى aW'b يا bW'a باشد، از آن جايیى كه W' W شمار كمترى a و b دارد، ساختنى است و

 تابع

13
D 2 .
T 5
11
D 2
T-11
$1^{10} \mathrm{~T}-3$
اكر مقدار حافظهى شمارمى 1 برابر 1374 و مقدار بقيه حافظهها برابر با صفر باشد، يس از اجراى اين
برنامه اين مقادير به چجه صورت خواهند بود؟
n است. برنامهيى براى اين ماشين حساب بنويسيد كه مقدار an را مداسبه كند. مقدار n م قبل از از اجراى
 در انتهاى اجراى برنامه مقدار an بايد در حافظهى شمار 1 مارْى 1 ذخيره شده باشد. تعداد دستورهاى

$$
\text { برنامهى شما نبايد از } 30 \text { بيشتر باشد. }
$$

Y فرض كنيد n است و هم n ثون تنها عددهاى 31 , 22 و 121 و 112 و 13 وجود دارند كه دو داراى اين شرايط هستند.) برنامهيى
 هافظلى شمارمى 1 قرار داده مىشود و مقدار بقيهى حافظهها در ابتدا برابر با صفر است. در انتهاى

اجراى برنامه مقدار b ${ }^{\text {b }}$ بايد در حافظهى شمارهى 1 ذخيره شده باشد.

4. D 2
5. T3
6. 14
7. $\mathrm{T}-3$
8. D 3
9. T 4
10. I 2
11. 14
12. $\mathrm{T}-4$
13. D 4
14. T 3
15. I 3
16. T -3
17. T -15
18. D 3
19. T 3
20. I 1
21. $\mathrm{T}-3$

بی كرانهيىى ${ }^{\text {ك }}$

1. $\mid 4$
2. T 4
3. T 11
4. D 4
5. T 4
6. 13
7. 13
8. $\mathrm{T}-4$
9. D 3
10. T 3
11. | 4

| ,

 اريتـى "اكر" نيز نشان داده شد.
 l

 i

艮

| الرنامه در هر گام مقدار حافظهى 1 را بر 2 تقسيم كرده، اگر ماندمى تقسيم 1 بود، يكى به مقدار
 تىالحارد. بس در يايان مقدارهاى حافظهمها به ترتيب 0، 0، 7، 0 خواهند بود.

$$
\text { يانانله an-1 } a_{n} \text {, را به دست داده، پس از آن مقدار حافظهى } 3 \text { ر را به حافظهى } 1 \text { مىريزد. }
$$

1. I 3
2. D 1
3. T 15

هرسشهاى نوبت دوم

مرحلهى دوم پنجمين الميياد

 111000، 000111، 111111 استفاده كنيم. در اين صورت اگر برای مثال كلمهى 1110111 به زمين رين برسد، میتوانيم تشخيص دهيم كه كلمهى درست 111111، و نه كلمهيى ديخر از كلمات فوق، بوده است كه در در اثر خطا به 110111 تبديل شده است.
ثابت كنيد شرط للزم وكافى براى اين كه عمل تشخيص و رفع كردن خطا ممكن با باشد اين است كه هر $1 \sqrt{ }$ دو كلمهيى كه از آنها استفاده مىكنيم لU اقل در سه محل با با هم اختلاف داف داشته باشند.
ثابت كنيد كه اگر n=20 باشد، براى اين كه خطاها قابل تشخيص و رفع باشند، نمىتوانيم بيشتر از

$$
50000 \text { كلمه در دستگاه داشته باشيم. }
$$

 كار اختصاص دهيمَ به طورى كه شرايط زير برقرار باشند:

- هر يكى از اين افراد يكى دفتر داشته باشد. البته هر يكى از دفترها مىتواند هر تر تعداد از اين افراد را در

12. $\mathrm{T}-3$
13. $\mathrm{T}-11$
14. D 4
15. T 5
16. 11
17. 12
18. I 3
19. $\mathrm{T}-5$
20. D 3
21. T 5
22. D 3
23. $T-23$
24. 14
25. T -5
26. D 1
27. T -1
28. D 1
29. T 3
30. 13
31. T -5
32. D 2
33. T -1
34. D 2
35. T 4
36. I 1
37. 13
38. T - 6
39. D 4
40. T 4
41. 12
42. 13
43. T -4
44. T -24

 1 p ¢ \qquad

یاسخهاى نوبت دوم
 مرحلهى دوم ینجمين الميياد

ا

 ب

\&

 را مىتوان در اتاقهاى مديران جاى داد. شمار كارمندان مانده

 M

مىدهد. يس، از آن رو كه M نامنفى است، اين كاهشها سرانجا يانجام يايان خواهند يافت.

A
$\mathrm{n}=\mathrm{m}$

$$
\begin{aligned}
& s_{i}= \begin{cases}1 & i=1,2, \ldots, m-1 \\
S+1 & i=m\end{cases} \\
& d_{i}= \begin{cases}2 S+1 & i=1,2, \ldots, m-1 \\
S+1+p_{i} & i=m\end{cases} \\
& l_{i}=p_{i} \quad i=1,2, \ldots, m \\
& \text { كار }
\end{aligned}
$$

شـشمين المپياد كامپيوتر

 مرحلىى دوم
هرسشهاى نوبت يكم
 مرحلهى دوم ششمين الميياد

 دو رشتهى دلخ دواه α و β از آن داريم

ثابت كنيد كه رشتهيى مانند 1 وجود دارد كه هر رشتهى دلخواه A را مىتوان از كنار هم گذاشتن تعدادى
ف به دست آورد.

$$
\text { x+ و ويا } x \text { است } x \text { است. }
$$

ثابت كنيد كه تعداد عناصر مجموعهى A دو برابر تعداد عناصر مجموعهى B است.

دستهى غيرتهى تقسيم مىكند. بازىكنى كه نتواند حركتى انجام دهد، بازندمى بازى است.
 ادعاى خود را اثبات كنيد.

ب شرط بازى را به اين صورت تغيير مىدهيم كه در هر نوبت، بازیكن بايد طورى يكى دسته را به دو
 اين صورت هم تمام nهايى را به دست آوريد كه براى آنها نـا نفر دوم بتواند طورى بازي كنى كند كه هميشه برنده شود. ادعاى خود را اثبات كنيد.
 دانش آموزان در تمام المييادها شركت مىكنند و هيج دو دانشآموزى در يـى المييياد نمرهى مساوى نمى
" أيرن در دو نوبت، نوبت يكم صبح رو

 كا "بليس و شاهدان" داراى 15 امتياز بود.

ياسخهاى نوت يكم مرحلدى دوم ششمين الميياد

$\alpha \beta \ominus \beta=\beta \ominus \alpha \beta=\alpha$.

 ويثه باشد و ${ }^{\text {و }}$
 بايد نشان دهيم برای هر $. \sigma^{\prime} \neq \sigma$

$$
\sigma^{\prime}, 1 \sigma \in S \Rightarrow \sigma^{\prime} \sigma_{1}=\sigma_{1} \sigma^{\prime} \Rightarrow \sigma^{\prime} \sigma \sigma_{2}=\sigma \sigma_{2} \sigma^{\prime}
$$

$\sigma^{\prime}, \sigma_{2} \in S \Rightarrow \sigma^{\prime} \sigma_{2}=\sigma_{2} \sigma^{\prime}$
$\therefore \sigma^{\prime} \sigma \sigma_{2}=\sigma \sigma^{\prime} \sigma_{2} \Rightarrow \sigma^{\prime} \sigma=\sigma \sigma^{\prime}$
با |

$$
S^{e}=S \cup\left\{\sigma_{1} \ominus \sigma_{2} \mid \sigma_{1}, \sigma_{2} \in S\right\}
$$

$$
S^{m}=S^{e e^{e}}, S^{m^{e}}=S^{m}
$$

روشن است كه فرايوش يك دستهى ويرّه، خود، نيز دستهيى ويثه است. همجنين اگر S ويثه باشد، نمىتوان

 "
 عالة浯
ه : در ايتدا، هبج دانشاموزى در هبج الميبيادى رد نشده است.

 تمر می بالاترى آورده باشد بذيرفته مكشود و ساير دانشآموزان درخواست دهنده، در صورت وجود، در آن الميباد
رد مسشوند.
 برمתكرديم.
 ب ثابت كنيد كه وقتى الگوريتم فوق پايان مىيابد، يک گزينش پایدار به دست آمده است.

VV 1.9

 ديريكله بايد يكى از افراد در دو المهياد پذيرفته شده باشد كه شدنى نيست.

 بوده و تا پايان نيز كمتر مانده است. از اين رو 'S كه در 'O پذيرفته شده است، نمرهيى بيش از او او دارد.

$$
\text { : }\left|\sigma_{1}\right|=\left|\sigma_{2}\right|, \sigma_{1} \neq \sigma_{2} \text { كا در آن يافت } \sigma_{2}, \sigma_{1} \text { دهـ }
$$

$$
\forall \sigma_{1}, \sigma_{2} \in S ; \quad \sigma_{1}=\sigma_{2} \Longleftrightarrow\left|\sigma_{1}\right|=\left|\sigma_{2}\right| .
$$

whicul

باكي ترط بايانىى كام ا را اين گونه تصحيح مىكنيم:

هرسشهاى نوبت دوم
 مرحلدى دوم ششمين الميياد

ج جه

$\pi(i)$ $، \pi(2)=1 ، \pi(1)=3$ برای مجموعهى $\pi=\langle 3,1,2,4\rangle$ $. \pi(4)=4, \pi(3)=2$

9
I . .

 پرانتزهاى باز و بستهى متناظر هم است كه در دو طرف آن x ج قرار دارند. به عنوان مثال، عمق هر x در در رشتههاى موزون فوق به صورت زير است:
$\left(\left(x^{22}\right)^{1}\right),\left(\left(\left(x^{3}\left(4_{x}^{44}\right)\right)\left(x^{33}\right)\right)\left({ }_{x}^{2}\left(3_{x}^{3} x\right)\right)\right)$
 موزون فوق به ترتيب 2 و 4 است. كمترين عمق هر رشتهى موزون با n تا x x را بر حسب n n به دي دست آوريد.

 هستند. نشان دهيد كه از يكى رشتهى موزون خلاصه شده مىتوان رشتهى موزون اوليه را به دست آورد.

ياسخهاى نوبت دوم
 مرحلدى دوم ششمين الميياد

 اكنون مىخواهيم (j) π را به گونهيى بيابيم كه روشنى \begin{tabular}{c|cccccccccc}
i \& 1 \& 2 \& 3 \& \cdots \& c \& $c+1$ \& $c+2$ \& $c+3$ \& \cdots \& $2 c$

\hline$\pi(i)$ \& $c+1$ \& $c+2$ \& $c+3$ \& \cdots \& $2 c$ \& 1 \& 2 \& 3 \& \cdots \& c

 هم اين استدلال به سادگى ير شدن را ييش مى برد. براى نمونه در ادامه جدول زير را داريم.

i \& $2 c+1$ \& $2 c+2$ \& \cdots \& $3 c$ \& $3 c+1$ \& \cdots \& $4 c$

\hline$\pi(i)$ \& $3 c+1$ \& $3 c+2$ \& \cdots \& $4 c$ \& $2 c+1$ \& \cdots \& $3 c$
\end{tabular}

$$
\text { c c= 1, 2, 499, } 998 \text { به دست مى آيند. از اين رو } 5 \text { جاىگشت متظم براى n= } 1996 \text { هست. }
$$

 D $\mathrm{D}_{n}=\lceil\lg n\rceil$
 $D_{n}=\min \left\{\max \left\{D_{m}, D_{n-m}\right\}_{m=1}^{n-1}\right\}+1$

 $D_{n}=\left\lceil\lg n\left\lceil\frac{n}{2}\right\rceil\right\rceil+1=\left\lceil\lg \frac{n}{2}+1\right\rceil=\lceil\lg n\rceil$.
 دو تايى از آنها با هم بيش از 2 اشتراك نداشته باشند. (يعنى هر 2 زيرمجموعه از بين 1375 زيرمجموعهى فوق با هم حد اكثر 2 عضو مشترك داشته باشند.)
 كريختند. بعد از اين سرقت پليس براى شناسايى دو مسيرى كه دزدها از طريق آنها فا فرار كرده بودند، شروع

 مدكن است برخى از شاهدان فقط يك مسير را گزارش كنند. به هر حال، هر شاهد حد اقل يكى مسير فرار

را به درستى گزارش مىكند.
| پیليس حد اقل چچند گزارش متفاوت بايد دريافت كند تا مطمئن باشد كه مىتواند دو مسير را به درستى
شناسايى كند؟ توضيح دهيد.
 دادگاه اثبات كند؟ توضيح دهيد.

كوتاه شدمى 1 - 1 مى رسيم كه بر يايهى فرض استقرا بازيافت شدنى است.

12 食 1
$\{1\},\{1,2\},\{1,3\},\{1,4\},\{1,5\},\{1,6\},\{1,7\},\{1,8\}$,
$\{1,9\},\{1,10\},\{1,11\},\{2,3\}$.

 يكى از

$\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{1,2\}$

 تنها

يرسشهاى نوبت يكم

مرحلهى دوم هفتمين الميياد

W		B
W		B

B		W
W		B

هر يی از مهرهها را مىتوان بها اين صورت حركت داد: آن مهره را برداشته و در خانهيى كه دو ستون و يك

ترتيب دلخواه، موقعيت صفحه را به شكل سوى راستا تبديل كنيم؟ توضيح دهيد.
 بازىى زير را با اين سنگريزيزها انجام مىدهندي

انجام داده است، برندهى بازى محسوب میشي
شرط للزק و كافى براى m و n را به دست آوريد كه نفر دوم بتواند طورى بازى كند كه برندمى بازى شود.
|

ياسخهاى نوت يكم

مرحلدى دوم هتتمين الميياد

خانهها را با عددهاى 1 تا 9 به گونهى زير شمارْگذارى مى كنيم.

1	2	3
4	5	6
7	8	9

خانهها را گرههاى گراف مىگيريم. اگر بتوانيم از يك خانه با يک حركت اسب به خانهيى ديگر برويم، گرههاى . متناظر را به هم مى ييونديم

 ناشدنى است.

 درست است. (حهرا؟) گيريم حكم براى 1 - 1 درست باشد. مى 1 دخواهيم نشان دهيم حكم براى m m درست است. n = s
 عددى كه نمايش آن در مبناى دو به صورت
الگوريتم زير† را در نظر بگيريد:
 a a_{k} را مساوى با $a^{\text {a }}$ قرار بده. r.r. به مقدار a

$$
\text { . F را برابر با } 1 \text { قرار بده. }
$$

 §. اءر F=1 است، به مقدار k يكى اضافه كن و در غير اين صورت به مرحلهى

است، به مرحلهى 「 برو و در غير اين صورت متوقف شو.
مقدار a1376 در انتهاى اين الگوريتم چند است؟ براى ادعاى خود دليل بياوريد.

 اولييى سكهها به صورت زير باشد:
(9)

میتوانيم اول سكهى دوم (از سمت چیپ)، سیس سكهى اول، و نهايتن سكهى جهارم را انتخاب كنيهم تا همهى سكهها به رو برگردانده شوند.
ب ثابت كنيد كه براى هر n كه به صورت n=3k+2 باشد، وضعيت اوليهيى وجود دارد كه براى آن با استفاده از اين حركتها نمىتوان اين كار را انجام داد (يعنى همهى سكهها را را به رو برگرداند).

 موقعيت نيز نمىتوان به همدرو رسيد. (حـهرا؟؟)

 رو آن را تتوان بد همهرو تبديل نمود.

با حركت بازیكن يكم 2 سنگريزه از يك دسته كاسته و 1 سنگريزه به ديگرى افزوده مىشود يس

 |m - n| موقعيتهاى باخت مى باشند. به هماين سان موقعيتهاى

هستند. يس براى m+n=s موقعيتهاى m n n
r r r يزركّتر از جملهى ييشين است كه ياى انحصارىى هيج دو جملaيى از جملa هاى ييشين نيست. نشان میدهيم

اگر

! (حهرا؟) تناقض $\cdot a_{c}=\left(a_{c}-2^{m}\right) \oplus 2^{m} \cdot a_{c}-2^{m}<2^{m}$

 a a b
|

$$
\text { مىتوان n سكه را به رو برگرداند. درستىى حكم براى k= } 0 \text { روشن است. اكنون گيريم k } 0 \text { ، }
$$

n
 سكههاى كنارىى دستهى 3سكهيى به پشت شده باشد. يس دو تاى ديگر را به پشت و ییس از آن هر سه را به رو برمى گردانيم.
ب
 براى n سكه روى هم n² روش برگرداندن هست.

هرسشهاى نوبت دوم
 مرحلدى دوم هفتمين الميبياد

 1 - و حاصل ضرب عناصر هر ستون آن نيز برابر با 1- شا شود. ادعاى خيا خود را ثابت كينيد.

 به حالت نهايىى مرتب از حالت اوليهيى به شكل زير میتواند به صورت

ثابت كنيد به ازاى هر k میتوان از هر ترتيب اوليهى ديسكها روى ميلدى شمارهى صفر به يك حالت
نهايىى مرتب رسيد.

كـ

 براى مثال اگر k= باشد، كامييوترى كه داراى كد 0100 است مستقيمن به كامييوترهايى با كدهاى 1100. 0000، 0110، و 0101 متصل است.

1. D
2. E 1
3. D
4. J 4
5. E O
6. J -3

برنامهى زير را در نظر بگيريد:

1. E 2
2. D
3. J 3
4. J 4
5. J 10
6. E 1
7. J -5
8. E 0
9. J -7

در صورتى كه قبل از اجراى اين برنامه، ليست عددها 1, 0, 0, 1, 0 باشد، پس از اجراى اين برنامه اين ليست به چه شكلى در خخواهد آمد؟ توضيح دهيد.
ب برنامهى زير را در نظر بخيريد:

1. E 2
2. E 2
3. D
4. J 5
5. J 1
6. E 2
7. E 0
8. E 6
9. D
10. E 0
11. J -8
12. E 2
13. E 1
14. D
 ($1 \leqslant p_{i} \leqslant 2^{k}$) p_{i} ورسد. فرض كنيد كه در بين دارد، بايد در نهايت به كاميبيور

 ثابت كنيد كه در حد اكثر 1 - 1 مرحله، كامييوترها مىتوانند همهى ييامها را با با توجه به شرط فوق به هقصدشان برسانند.
A .

 ((E X X " عددها اضافه مىكند و يس از آن دستور بعدى را انجام میدهد.

 اگر 2 بود، دو دستور را جا مىاندازد و دستور بعدى را اجرا مى كند.
(d (ل J d "
است، و اگر d منفى بود، دستورى كه d تا قبل از دستور فعلى است را اجرا مىكند.

 دستورالعمل D برخورديم، برنامه متوقف مىشود.

 ليست عددها خالى خواهد بود.

ياسخهاى نوبت دوم

مرحلهى دوم هفتمين الميياد

 از أ i ا اين زيرماتريس، مى شوند. تنها m

(mod 2)

 (金 V

15. J 7
16. J 8
17. E 2
18. D
19. J -15
20. J -15
21. J 10
22. E O
23. J -9
24. E 1
25. J -11

در صورتى كه قبل از اجراى اين برنامه، ليست عددها از 1376 تا عدد صفر تشكيل شده باشد، يس از

ب فرض كنيد كه يی ليست از عددهاى 0 و 1 در حافظهى اين كامييوتر قرار دارد. (توجه كنيد كه ليست، شامل عدد 2 نيست.) برنامهيى براى اين كامييوتر بنويسيد كه يس از اجراى آن، اين ليست بر عرئي شود. در مورد برنامهيى كه مىنويسيد توضيح دهيد.
17. J - 6
18. E 1
19. $\mathrm{J}-8$
20. E O
21. J -14
22. E O
23. $J+2$
24. E 2
25. D
26. $J+12$
27. J +13
28. E 2
29. D
30. J +4
31. J +5
32. E 1
33. J -31
34. E O
35. J - 6
36. E 1
37. J -8
38. E 1
39. J -32
40. E 1
41. J -16
 O O O O O O O O O
بر بايهى فرض استقر| رايانههاى
 إ أن، رايانههایى .
| برنامه به روشنى با گُرفتن يك ليست از 0 , 1، 0ها را به 1 و 1ها را به 0 تبديل مىكند: $01001 \longrightarrow 10110$.
 برای نمونه داريم

$$
00000 \longrightarrow 1012 .
$$

بس در پايان رشتهى 101011000002 در ليست خواهد بود. ب با با بهارگيرىى دو 2 ليست را ميان آن دو وارون مىكنيه.

1. E 2
2. D
3. $\mathrm{J}+3$
4. $J+20$
5. $J+50$
6. E 2
7. D
8. $J+12$
9. $\quad J+13$
10. E 2
11. D
12. $J+4$
13. $J+5$
14. E O
15. J -13
16. E O

هشتمين المپياد كامپيوتر
مرحلمى دوم

هرسشهاى نوبت يكم
 مرحلهى دوم هشتمين الميياد

مجبور مىكنيم كه k تومان به b بدهد.

از k تومان ييشتر باثد.

「 「

 | ابابت كنيد اگر n=6
 حركتى كه میتواند را انجام دهد، نفر اول برند برده شود.
 شود، و در غير اين صورت نفر اول میتواند برنده شود.
r

$$
\text { "ماتريس عجيب" داراى } 15 \text { امتياز بود. }
$$

ياسخهاى نوت يكم
مرحلهى دوم هشتمين الميياد
n 1

 |M - m| نخواهد كرد.
با ثابت شدن |M-m| \mid دست پايين يكى از يولدارترينها همواره M تومان خواهد داشت. يس او ديگر در

 2 سنگريزهى مانده را بردارد.

 كا يكم n $n=2^{m-1}$ را انجام داده، بر یايهى اين بازیى

يك مسير فراگير در اين شبكه، مسيرى است كه از نقطهى گوشهى بالا و سمت جیپ آغاز شده، از هر نقطهى

 زير يی مسير فراگير براى يك شبكهى 4×3 ج 3 را نشان مىدهد.

ثابت كنيد كه مسير فراگير تنها در صورتى وجود دارد كه دست كم يكى از m و n فرد باشد. $2 n$ A $A A^{\prime}$

 روى براى مثال شكل زير يكى جواب مساله براى حالت n=3 است.

| ا ثابت كنيد كه اگر n يك عدد فرد باشد، اين كار همواره ممكن است. ب ثابت كنيد كه اگر n يك عدد زوج باشد، اين كار ممكن نيست.
lod ا.^ إسخهاى نوبت يكم
با توجه به يكسان بودن مجموع گرههاى دو سوى هر قطر داريم
$S_{1}+S_{2}=S_{3}+S_{4}$,
$\mathrm{S}_{2}+\mathrm{S}_{3}=\mathrm{S}_{4}+\mathrm{S}_{1}$.
 عددهاى يكسانى داشته باشند. اين با گوناگون بودن عددهاى ييرامون دايره تناقض دارد.

سنگ_ريزهى
 اگر n n =
بازىى m² گردانده، خود برنده مىشود.

 دقت كنيد كه درستىى "اگر" خواسته نشده است. •
| با آرايشى به گونهى نشان داده شده در زير به روشنى خواسته برآورده شده است.

روشن است كه چون n فرد است، $2 n$ كنار 1 خواهد بود.

به جهار تكه با مجموعهاى

هرسشهاى نوبت دوم
 مرحلهى دوم هشتمين المهياد

 توسط دقيقن يك فرش يوشانده شده است.
ثابت كنيد مجموع عرض اين فرشها از عرض اتاق كمتر نيست. منظور از عرض يكى مستطيل اندازمى كوتاهترين ضلع آن است.
¢ مى خورد (با آن' هماندازه است) و هيج دو ييجيى هم اندازه نيس ونيتند.

 را بيدا كنيم. توجه كنيد كه نمىتوان دو مهره يا دو ييج را مستقيمن با هم مـ مقايسه كرد. | ب برشى ارايه دهيد تا بتوان مساله را در حالت كلى با 2 - 2 آزمون حل كرد.

جهت زير را نشان مىدهد.

شـكل 1 (مطابق با شكل فوق) باشد، فلش هر يك از خانههاى مجاورش به يكى از سه شكل 1، 2، يا 8

 میرويم نسبت به جهت فلش خانهيى كه در آن هستيم، به اندازیى 45-، 0، يا 45 درجه در جهت عقربههاى ساعت اختلاف دارد. مقدار اين اختلاف درجه را يادداشت مىكنيم. براى مثال، اگر شكل
 بازگُرديم، به ترتيب عددهاى 45-، 45، 0، 0، 45، 45-1، 0، 0، و 0 را يادداشت خواهيم كرد.

ثابت كنيد اگر یس ازطى پند مرحله به خانهيى كه حركت را از آن جا آغاز كرده بوديم برسيمه، مجموع عددهايیى كه يادداشت كرده ايم، برابر با صفر خواهد بود.

 كند، از جدول خارج مىشويم. ثابت كنيد كه با اين نحوهى حركت بالاخره از جدول خارج خواهيم شاريم شد.

 داراى چنين خاصيتى است.

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
2 & 1 & 2 \\
2 & 2 & 1
\end{array}\right)
$$

تابت كنيد هر دو سطر اين ماتريس دقيقن در يك درايهى متناظر، با هم برابر اند؛ يعنى براى هر دو سور دلخواه i و ز، ققط يك ستون وجود دارد كه مقادير درايدهاى سطر أم و سطر زم در آن يكسان باشند.

> مهحوع اختلاف زاويههاى دور را برآيند زاويميمى آن دور نام مى كذاريم.

ايرآيند زاويهيى ناصفر خواهد بود. (حهرا؟؟) پس كوتاهترين دور از خانهيى تكرارى نـى گذذرد.

 با يبوستن دو گره از آن، آن را به دو دور كوتاهتر تبديل كرد. براى نمونه در شكل زير در دور abcdef كوتامتر abcgf و cdefg را به دست داده است.

a	,g	7 d

 ناصفر دارد و كوتاهتر از دور آغازين است. تناقض!

 يس اين دور برآيند زاويهيىى ناصفر دارد كه بر پايهى قسمت ييشين ناشدنى است.
 ر الين دو ستون همهى جفتهاى ممكن را به دست نخواهند داد. يس هر دو سطر در دست بالل 1 جا يكسان

يرسشهاى نويت يكم
 مرحلهى دوم نهمين الميياد

دور يك دايره n رقم صفر و يبى نوشته شده است و زير يكى از اين ارقام، يك خط تير ايره وجود دارد. در هر مرحله مىتوانيم يكى از دو عمل زير را روى اين رشته انجام دهيمي: "
"

 داده شده رسيد و آن را ثابت كنيد. n = مثال زير نمونهيى از تبديل دو حالت اوليه و حالت نهايىى داده شده در 4 مرحله است (در اين مثال

حالت نهايى

حالت اوليه

(

		\bullet			\bullet
\bullet		\bullet		\bullet	
	\bullet	\bullet	\bullet		
\bullet	\bullet		\bullet	\bullet	\bullet
\cdot	\bullet	\bullet	\bullet		
\cdot		\bullet		\bullet	\bullet

 مینويسيم و عمل زير را $2 k$ بار روى آن اجرا ميا مكنيم.

خاندى í بنويس.

نابت كنيد يس از آن، ادامهي انجام عمل فوق، تنييرى در محتواى جدول نميل نمىدهد. به عنوان نونه در زير روند تغيير يكى جدول 4 × 1 در طول اجراى عـي عمليات آمده است:
(2341) \rightarrow (3413) \rightarrow (1311) \rightarrow (1111)

هرسشهاى نوت دوم

مرحلهى دوم نهمين المهياد

يك مدرسه، سه تالار اجتماع A، B، و C دارد. يك روز، همهى دانشآموزان در تالار A جمع شدند و مار معلوم شد هر دانشآموز ل اقل s+t نفر را مىشناسد. بعد از اين، تعدادى از دانش آموزان به تالار B B و تعدادى به تالار C رفتند. میدانيم كه در تالار B هر نفر لU اقل s نفر را در هم آن تالار مىشناسد و در تالار C نيز هر نفر حد اقل t نفر را در هـمآن تالار مىشناسد. ثابت كنيد افرادى كه در تالار A مانده اند اند را ما میتوان به گونهيى بين دو تالار C B B تقسيم كرد، به طورى كه بعد از تقسيم باز هم هر نفر در تالار B لU اقل s نفر از افراد هم هم آن تاللار و هر نفر در تاللر C U اقل t نفر از افراد هم آن تالار را بشناسد (فرض كنيد آشنايى يک رابطهى دوطرفه

> است، يعنى اگر a شخص b bا بشناسد b نيز a را مىشناسد).

يك جدول n n n شامل اعداد طبيعى و يك ماشين مقايسهگر در اختيار داريم. مىدانيم در اين جدول، اعداد در هر سطر و در هر ستون به صورت اكيدن صعودى مرتب شـه اند. مى خـواهيم عدد k k را در جدول

 در اين جدول وجود دارد يا نه؛ و در صورت وجود k، جاى آن را در جدول مشخ آنص كند روش خود را با یاسخ به سوالات زير بيان كنيد و درستىى آن را ثابت كنيد: -
■ بعد از دادن هر كارت و با توجه به جوابى كه ماشين مىدهد، جهه كارتى را بهماشين مىدهيد؟ 99

 بخذريم، و در يك دايره (غير از دايرهى اول) كار خود را خاتمه دهيم، به طورى كه در طول حركت هر دايره را

\circ	\circ	\circ			\square
\circ	0	\circ	\circ	\circ	\circ
\circ	\circ	\circ			
\circ		\circ			
	\circ			\circ	
	\circ				\circ

 $\longleftarrow n-6 \longrightarrow$

 6 × 6 هم دست

$$
\left\lfloor\frac{2(n-6)-1}{3}\right\rfloor+4=\left\lfloor\frac{2 n-1}{3}\right\rfloor
$$

مهره نياز مى باشد.
 میرسيم كه در آن هر گره درجهى خروجىى 1 دارد.

n به 1 مى nسد. از اين رو پس از گام kم دورها تنها مىتوانند دورهايى به درازاى 1 يا لوپها باشند.

در هر گام دست پايين نيمى كاهشُ مىيابد. بر اين سان یس از گام 2k 2k دور يا مسيرى با درازاى بيش از 1 بر بر
جاى نمىماند. جدول به پایدارى رسيده است. (جهرا؟؟)

یاسخهاى نوبت دوم
 مرحلدى دوم نهمين المهياد

q ستونها مىتوان با دست بال 1 - 1 (1 كارت به خواسته رسيد. درستى

 اگر q=1 نيز كار یايان يافته است. در حالتى كه عدد آزموده شده كوحكـتر از k است نيز به روشى مشابه به

(ح

 گونهى گغته شده هست.

در بيان مساله مىبايست گفته شود "بازىن يكم يكى از مهرههاى خود ...". \wedge

دقيقن يك بار ملاقات كنيم. به عنوان نمونه اگر n برابر 6 باشد، شكل زير يكى از مسيرهاى ممكن را نشان

. .. n

 است. به محض آن كه فردى مهرمهاىش را از دست بدهد از دور ميز كنار مى رود. مثلن اگر در ابتداى بازى نفر 1 و 2 از دور خارج مىشوند.

مرحلدى دوم نهمين الميياد

iro

 رسيده ايم و بر پايهى فرض استقرا بازیى آنان پايان مى يابد

ب ب ديكر بازىكنها k مهره داشته باشند و k و و ديگران $2 k_{1}+k_{2}$

 نشان داده شد؛ بايد o = 1 تا بازیى پايان يابد.

دهمين المپِياد كامبيوتر

مرحلمى دوم

هيرسشهاى نوبت يكم

مرحلهى دوم دهمين الميياد
n عبارت ديخر، هر دو خط دل هواه يك نتطهى تلاقىى منحصر به فرد دارند) . روى هر نقطهى تلاقى يك عدي

 يك مثال براى n=3 است. در اين مثال اعداد دوى نقاط تقاطع 9، 13، و 3 هستند.

ثابت كنيد اگر n مضرب 4 باشد، آن كاه همهى اعداد ناحيهها نمىتواند فرد باشند.

 روشن و لامبهایى 2 و 3 خاموش خواهند شد

 (

 .

$$
\text { با لا "باذىى سنگريزهها" داراى } 15 \text { امتياز بود. }
$$

 را اتتخاب كند كه براى هر وضعيت اوليهى دلخواه ازي هراغها در حين انجام عمل به جايى برسيم كه همدلى

جراغغا خاموش باشند.

ياسخهاى نوت يكم مرحلدى دوم دهمين المبيياد

I گيريم 4 و و همشى بخشها عددى فرد دارند. شمار بخشها برابر $R_{n}=\binom{n}{2}+\binom{n}{1}+\binom{n}{0}=\frac{1}{2} n(n+1)+1$

$n=4 m \Longrightarrow R_{n}=2 m(4 m+1)+1=2 k+1 \in \mathbb{O}$.
به اين سان مجموع عددهاى بخش ها، مجموع شمارى فرد عدد فرد است و فرد خواهد بود. از سويى ديخر عدد
 عددهاى بخشها بايد زوج باشد. تتاڤض!

 خواستهيى ديخر را در نظر داشته است كه بسيار ساده مطرح گشت「 「 است. براى نمونه در جفت (safaraf, 6) به گونهى زير می رسيمر.

 توجه به ترتبب الفبايى میتوان عضوها را بـ ترتيب جاى جاگذارى نمود.

هرسشهاى نوبت دوم

مرحلهى دوم دهمين المهياد

يك صفحهى شترنجىى 8 × 7 داده شده است. مى تقسيم كنيم به طورى كه اندازنى هر قطعه حد اكثر 5 باشد و طول برش كمينه شود.
 دهيد و ثابت كنيد كه مجموع طول برش به دست آمده كمينه است.
 ■ هر جاده فقط دو تا از شهرها را به هم متصل مىكند. ■ بين هر دو شهر حد اكثر يك جاده كشيده شده است. يكى نقشه درختگونه است اگر سه شرط زير در آن برقرار باشد.
. . از هر شهر آن بتوان به هر شهر ديگر از طريق جادهها مسافرت كرد.
 ديخر ناممكن شود.
. تعداد جادهها دقيقن يك واحد كمتر از تعداد شهرها باشد.

 ستونها ادامه مىيابد.

全 شمارى چند از ديخر سطرهاى جدول را مى نويسيم.

به اين سان اين ساختار سهگوشى به روشنى یس از هر سطر, توان 2 تكرار مىشود. شمار 1ها را در

$$
\text { كرانميىى } 1 \text { O } 1 \text { را نيز داريم. يس داريم }
$$

$1379=(10101100011)_{2}$,
$\mathrm{O}_{(10101100011)_{2}}=2^{1} \mathrm{O}_{(101100011)_{2}}=2^{2} \mathrm{O}_{(1100011)_{2}}=2^{5} \mathrm{O}_{(1)_{2}}=2^{5}$.

در نوبت خود نتواند حركتى انجام دهد بازنده است (يعنى همهى دستهها تنها يكى سنگريزه داشته باشد) و فرد ديخر برندمى بازى است
 كند. فرض كنيد حركت 12,3 (3 را انتخاب كند. نفر دوم در هر صورت بايد دستهى 2 2 تايى را به دو دستهى

بازى را مىبرد.

به ازاى چیه nهايى نفر اول و به ازاى چهه nهايیى نفر دوم مىتواند طورى بازى كند كه حتمن برنده شود؟

|Y^ مرحلدى دوم دهمين الميياد

نقشهى زير درختگونه نيست و فقط در آن شرط r رعايت شده است، چجون مسافرت از شهر 1 به شهر 3 ممكن نيست. البته در صورت حذف جادمى بين شهرهاى 3 و 4، مسافرت بين اين دو شهر از طريق شهر 5

ممكن خواهد بود. نقشهى صفحهى بعد درختگونه است.

ثابت شده است كه اگر در يی نقشه دو شرط از سه شرط گفته شده درست باشد، نقشه درخت گورنه است، و شرط ديخر هم در مورد آن صدق مىكند. شما هم مىتوانيد اين مطلب را درست فرض كنيد.

تعداد درختجهههاى يك نقشه را درجهى استحكام آن نقشه مىناميم. بزرگترين درجهى استحكام همهى نتشههاى درختگونه با H شهر را به دست آوريد.

 كه با تكرار عمل جابهجايى در نهايت جدول مرتب شود. يك جـي جدول مرتب شده است اگر در آن آن، براى هر i i i در خانهى i i قرار مىگيرد). مثلن در شكل زير، پس از 2 بار جابدجايى جدول مرتب شده است.

حد اكثر تعداد عمل جابهجايى كه للازم است تا بتوان هر حالت ممكن از جدول (n+1
 مىتوان با حد اكثر 2 بار جابهجايى مرتب كرد.
 بايد تمام دستههاى موجود با بيش از يک سنگ_ريزه را به دلخواه به دو دستهى ناتهى تقسيم كند. هر كس

هاسخهاى نوبت دوم
مرحلهى دوم دهمين الميياد

 است، بكاهيم، دو برابر درازاى برش، L، به دست میى آيد. يس درازازى برش بـي برابر

$$
L=\frac{\left(2 p_{1}+2 p_{2}+\cdots+2 p_{n}\right)-2(7+8)}{2}=\sum_{i=1}^{n} p_{i}-15
$$

, $\sum_{i=1}^{n} s_{i}=7$ • بايد L ا است. به اين سان براى كمينه كرد

كوجكترين نسبت p/s را در ميان تكهها با مساحت نابزرگتر از 5 دارند. براى اين دو شكل داريم . $p_{i} \geqslant s_{i}$.p/s

$$
\mathrm{L}=\sum_{i=1}^{n} p_{i}-15 \geqslant \sum_{i=1}^{n} s_{i}-15=56-15=41
$$

شكل زير نيز كمينهى درازاى برش 41 را به دست مىدهد.

\&

年 $2^{n-1}-1+n$

$$
\text { نيز درست n + - } 1 \text { - n-1 } 2^{n} \text { درخته هست. (جهرا؟) }
$$

وضعيت هايانى بايد از 1 n+ 1 حلقه تشكيل شده باشد.

هست، باشد.

 است. اين شمار جابهجايى نيز به روشنى براى مرتبسازىى اين آرايش يا هر آرايش ديگر بس است.
^

 گيريم

يازدهمين المپياد كامييوتر مرحلىى دوم

پرسشهاى نوبت يكم
مرحلهى دوم يازدهمين الميياد

 ثابت كنيد كه براى هر عدد طبيعىى n n 2 n 2)، مىتوان با انجام تعدادى حركت يكى از مهرهها را بـ خانهى n م برد.
M اگر دو خاصيت زير را داشته باشد:
همهى درايدهاى A برابر 0 يا 1 باشند.
 باشد بد گونهيى كه

تحند ماتريس n n يرمغز وجود دارد؟ nr

 فرمانده باشند (توضيح آن كه به غير از اعضاى گروه، به كسى كد داده داد نمى دشود). | درست نسبت داد.

 جراراي 15، وسالهى 1 با نام "استانها" داراى 15 امتتاز بود.
 وجود ندارند كه
.ff

 آن را بد جاىگشت علامتدار زير تبديل مىكند:

$$
\left\langle a_{1}, a_{2}, \ldots, a_{i-1},-a_{j},-a_{j-1}, \ldots,-a_{i+1},-a_{i}, a_{j+1}, \ldots, a_{n}\right\rangle
$$

براى مثال با انجام متوالىى دورانهاى (1,2)، (2,3)، و (1,2) روى جاىگشت علامتدار (1,2,3)، به. ترتيب جایگشتههاى علامتدار زير به دست مى آيند:

$$
\langle 1,2,3\rangle \rightarrow\langle-2,-1,3\rangle \rightarrow\langle-2,-3,1\rangle \rightarrow\langle 3,2,1\rangle
$$

ثابت كنيد دست كم 1 - 1 دوران براى تبديل
r
 فرد بود، 1 و اگُر زوج بود، 0 مى باشد. براى نمونه برآيند يك سطر، خودش و برآيند هيج سطر، يا يك سطر با خودش، سطر همه0 است. با اين تعريف شرط دوم از مساله به اين كه هيج دستهى ناتهىيى از سطرها برآيند 0 ندارد، تبديل مى شود.

 يكسان به دست دهند. به اين سان برآيند برآيندهاى اين دو دسته و و در نتيجه برآيند سطرهانيانى نامشترى اين اين دو دسته كه ناتهى است (چهرا؟؟)، برابر 0 مى مباشد. (چهرا؟؟)

 نايكسانى برآيندهايى يكسان ندارند، دست يايين با شمار زيرمجموعهها از m سطر.

 ـطلر جديد يكسان مىشود كه تناقض است. به اين سان بازگُشت

هرسشهاى نوبت دوم

مرحلهى دوم يازدهمين الميياد

 و نيز يكى از كوتاهترين مسيرهاى بين اين دو نقطه باشد (يعنى كمترين تعداد پارهخط را داشته باشد) . عدد

براى هر n، m، و k تعداد حالتههايى را كه مىتوان یارهخطها را با شرايط فوق عددگذارى كرد بيابيد و ادعاى خود را ثابت كنيد.

مجاور اند اگر در يكى ضلع مشترى باشند). هم هنين همهى درايههاى يك ماتريس جمعى صفـ صفر نيستند.
| براى n=4 يك جدول جمعى بسازيد.

ب ثابت كنيد اگر باقى ماندهى تقسيم n بر 5 برابر 4 باشد، مىتوان يك جدول جمعىى n n ساخت
 شمـارههاى فرماندهان كه دست بالا
 $. r+s \equiv 0 \quad(\bmod 4), p+r \equiv 3 \quad(\bmod 4)$

 حالى كه c + d d كد يكى سرباز بوده است. تناقض!

俍

 ليثل اين جفتها اثرى بر s ندارد. (حهرا؟) تغيير s تنها در تبديل جفت
 لبانـد، بايد داشت $a_{i-1}<a_{i}<-a_{j+1}<-a_{j}<a_{i-1}$

كـ با توجه به ويرگیى تراگذرى بايد داشت بيخورد واز اين رو براى رسيدن s از n n به 0 به دست پايين 1 - 1 گام نياز است.

1380 وزنه با وزنهاى

.

وزلیى y داده شده است. مىخواهيم با كمتر از 25 مقايسه مشخص كنيه آيا y با هيج كدام از وزنه هاى 1 x
 انست از قرار دادن دو وزنه در دو كفهى يك ترازوى دوكفهيى.

 شرط را جهارگوش يكه مىناميمي. للاز بودن شرط روشن است. (جهرا؟؟) گيريم شرط برقرار باشد. در هر كوتاهترين مسير در هر گام يكى تكه

شرط نيز نشان داده شد.

 يكتا انجام میيذيرد.

شمار يارْخطهاى يررنگ به سادگى برابر با - 1 با
 ارقام صفر ويك اختصاص داده ايمه، به طورى كه كد هر شهر از استان اون اول شامل تعداد فردى ريّى رقم يك وكد

تا كنون نشان داديم F(U
$F(F(U \Delta V))=F(F(U) \Delta F(V))=F(F(U)) \Delta F(F(V))$.
 از شهرهاى استان يكم بد گونهى $\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$

$$
\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}=\left\{c_{1}\right\} \Delta\left\{c_{2}\right\} \Delta \cdots \Delta\left\{c_{m}\right\}
$$

برابرىهاى زير را میتوان به دست آورد.

$$
\begin{aligned}
F\left(F\left(\{c\}_{i=1}^{m}\right)\right) & =F\left(F\left(\bigwedge_{i=1}^{m}\left\{c_{i}\right\}\right)\right) \\
& =\bigwedge_{i=1}^{m} F\left(F\left(\left\{c_{i}\right\}\right)\right) \\
& =\bigwedge_{i=1}^{m}\left\{c_{i}\right\} \\
& =\left\{c_{i}\right\}_{i=1}^{m}
\end{aligned}
$$

دقت كنيد كه برابرىى . $F\left(F\left(S_{1} \triangle \dot{S}_{2}\right)\right)=F\left(F\left(S_{1}\right)\right) \Delta F\left(F\left(S_{2}\right)\right)$
ا باسخ را در شكل زير داريم.

0	+1	+1	0
-1	0	0	-1
-1	0	0	-1
0	+1	+1	0

 4 ج 4 بالن را جاىگذارى كرده، علامت اين زيرجدولها را يكى در ميان به صورت شترنجى وارون میكنيهـ. \$ 690 وزنهى شمارهى زوج داريم. يكى جست و جوى دودويى براى يافتن لy ميان اين وزنهها انجام

 $F(U \triangle V)=F(U) \Delta F(V)$.

$$
\mathrm{S}_{1}=\mathrm{S}_{2} \Longleftrightarrow \mathrm{~S}_{1} \subseteq \mathrm{~S}_{2} \wedge \mathrm{~S}_{2} \subseteq \mathrm{~S}_{1}
$$

 c $c \in F(U) \triangle F(V)$ و بنا بر اين c $c \in F(U) \oplus c \in F(V)$ الين سان داريم اكر

دوازدهمين المبیاد كامپيوت
مرحلمى دون

يرسشهاى نوبت يكم
 مرحلدى دوم دوازدهمين الميياد

در هر خانه از يك جدول، كه
 ستون از n ستون جدول را را انتخاب كرد و وخان
1هاى هر سطر در خانههاى رنگ شده باشد.
 كنيم كه تمام n نقطه را در بر گيرند (يعنى هر نقطه داخل يا رو روى محى محيط لل اقل يكى دايره بيفتد) و شعا
دايرهها در حد امكان كوچک باشد.

 a ak-1 و و ${ }^{\text {a }}$, .. مرحله نقطهى به دست آمده را به S اضافه نمىكنيم، و فقط فاصله را يادداشت مىكنيم.

را در بر مىگيرند.

ب ثابت كنيد به ازاى هر عدد r، اگرادايرهى دلخواه به شعاع r r وجود داشته باشند كه تمام n n نقطه در بر گيرند، آن گاه خواهيم داشت:

 (10، 10)، و مسالهى V با نام ״مشكلات دولت" داراى 30 (10، 10، 10) امتياز بود.

D 1

 C 2يك برنامهى نمونه كه اين كار را انجام مىدهد به صورت زير است:

 جدول صورت مسالهى ساده، يك برنامه نوشت. ثابت كنيد كه میتوان براى هر جدول صورت مساله، يك برنامه نوشت.

سياه میناميم اگر تمامىى a×b
 زيرمستطيله هاى سياه غير قابل گُترش يششتر از mn نيست.

 . $\left\langle M_{1}, M_{2}, \ldots, M_{n}\right\rangle$,

آنها صفر بود) تغييرى در مقادير خانهها ايجاد نمى كند.
 C 2

هـ هآن

 هـ سطر با آن رشتهى ورودى در حافظهى هاتى قرالى قرا گرفته باشد.
 بدهيم، دستورالعمل هاى اين برنامه به ترتيب اجرا مى مشولد
(n=2) و جدول صورت مسالهى زير داده شده است:

رشتهى ورودی رشتهى خروجى	رشیا
$(0,0)$	$(0,1)$
$(0,1)$	$(1,0)$
$(1,0)$	$(1,1)$
$(1,1)$	$(0,0)$

ياسخهاى نوت يكم
مرحلهى دوم دوازدهمين الميياد
k

 شرط k 2 را اعمال مىكنيه.

 كه در سطرهاى i و \mathfrak{i} د داراى 1 باشد.

| اگر نقطهيى بيرون همهى اين دايرهها باشد، فاصلهى آن تا

 . $a_{k} \leqslant 2 r$ سويى ديخر داريم . $\mathrm{d} \geqslant \mathrm{m}$.
「

یشت هم اجرا مىكنيم. به اين سان دنبالهى خروجى 〉

 گيريم دنبالهى رشتههاى

با توجه به الگُوى رنگىى به كار رفته در اين سطر روشن است كه بيشينهى شمار اين مستطيلهاى
كسترشنانذير میتواند n تا باشد كه تنها اگر سطر همهسياه باشد، به دست میآيد. (حهرا؟؟)

اكر در هر سطر جز سطر پايينى كراندار بودن مستطيلها را از هايين ناديده گيريه، به دست بالا mn مستطيل
 ل"س دست بالا mn مستطيل گسترشنايذير میتوان يافت.

```
    |
```

C z_{1}
C z_{2}
C z_{m}
D d
C z_{1}
C z_{2}
C z_{m}

خروجىى خواسته شده را دارد.
 الز رشتهها به گونهي، مى،سازيم كه هر دو جملدي كنار هـ آن درست در يـى

هرسشهاى نوبت دوم

 مرحلهى دوم دوازدهمين الميياد

 مرحلهى دوم دوازدهمين الميياد}

يك كارخاندى توليد اسباببازى، جغجغههايىى در k رنگ مختلف توليد مىكند. اين كارخانه برایى

 جغجزغهها حد اكثر 2 رنگى مختلف داشته باشند.

$$
\text { | ثابت كنيد مىتوانيم با برگرداندن حد اكثر } 13 \text { كارت، سه كارت مورد نظر را ييدا كنيم. }
$$

ب ثابت كنيد مىتوانيم با برگرداندن حد اكثر 9 كارت، سه كارت مورد نظر نـر را يا ييدا كنيم. (حل اين بند باريا برگردراندن حد اكثر 10 كارت نيمى ازندريّى اين قسمت رآ خواهد داشت.

 آورده است. اين شركت دو ماشين قابل برنامهر يزىى B A A A را خريدارى كرده است است. هر برنامهيى كه به اين

ماشينها داده مىشود از حهار قسمت تشكيل شده است:

- قسمت اول شامل تعدادى متغير است كه بايد نامهاى آنها به ماشيين داده شوند. " در قسمت دوم تعدادى نابرابرى به ماشين داده مىشود كه همگى بايد به شكل زير باشند:

 3 و 5 پرواز مستقيم وجود داشته باشد، برنامهيى كه به ماشين داده مى شود به صورت زير زير است

 minimum عددى كه ماشين B به عنوان كمترين مقدار ممكن براى مجموع متغيرهاى اصلى اعلام كرده، برابر كمترين

توجه كنيد كه جهت بزرگتر نابرابرىها بايد رو به متغيرها باشد. در نابرابرىى بالا k يك عدد طبيعىى دلخواه است. هم جنين

X تعدادى از متغيرها هستند.
"
" در قسمت ههارم تعدادى از متغيرها به عنوان متغيرهالى اصلى به ماشين معرفى مىشوند.
 طورى نسبت مىدهد كه اولن تمامىى نابرابرىها برقرار باشند و وثانين مجموع متغيرهاى اصلى اصلى بر حسبـ اين اين كه كلمهى انتخاب شده maximum minimum بوده، كمترين يا بيشترين مقدار ممكن خود
 فرق ماشين B با ماشين A تنها در اين نكته است كه اين ماشين به جاى مقادير حقيقىى نامنفى، فقط میتواند يكى از دو مقدار 0 يا 1 را با به متغيرها نسبت دهد. اين ماشين نيز مانند A كمترين يا بيشترين مقدار هجموع متغيرهاى اصلى را با حظظ درستىى نابرابرىها به دست مى آورد. براى مثال برنامهى زير را در نظر بگيريد:

متغيرها	x, y, z
نابرابرىها	$\begin{aligned} &-2 x-y-z \geqslant-2 \\ & x \geqslant 1 / 6\end{aligned}$
كلمهى انتخاب شده	maximum
متغيرهاى اصلى	y, z

با دادن اين برنامه به ماشين A، ماشين عدد 5/3 را به عنوان بيشترين مقدار ممكن براى y "ى كند، كه مثلن به ازاى

شركت زتروس اعلام كرد كه حاضر است مسايل يبشنهاد شده توسط دولت را حل كند. اولين مسالهيى كه

 كل داروهاى ذخيره شده در تمام شهرها كمترين مقدار ممكن را داشته باشد. توجه كنيد كه اگر از شهر a به

ياسخهاى نوبت دوم

مرحلدى دوم دوازدهمين الميياد

 شمار جغجغههاى

 گونهى خواسته شده جاى دارد.
¢ فاصلهى دو كارت را d میگوييم اگر d - 1 كارت ميانشان باشند.
 C1 بر اين سان 13 است.

 C55/2† = 28

اين شركت ييشنهاد داد: آقاى رييس جمهور مى خواهد تعدادى از نمايندگان مجلس را به جلس السهيى

ماشين B بد زتروس كمك كنيد كه اين مساله را حل كند.

> اين مساله را با استفاده از ماشين B حل كنيد.

ماشين B نخواهد بود).

ب \$
$y_{i}= \begin{cases}0 & x_{i}<.5 \\ 1 & x_{i} \geqslant .5\end{cases}$
 ناكوحکتر از 5. باشد و از اين رو دست يايين يكى از از

居

 , را دارند و كار به ها $F_{1}=F_{2}=1$ بايان رسيده است.

 را داشته باشيه. یس دست بالا يكى از از نمايندگان , maximum را براى هر جفت كينdتوز، $-x_{i}-x_{j} \geqslant-1$ به اين سان نابرابرى $x_{i}+x_{j} \leqslant 1$

 . رانشت

سـيزدهمين المپياد كامپيوتر
مرحلمى دوم

ريرسشهاى نوبت يكم
 مرحلهى دوم سيزدهمين الميياد

 را در نظر میگرفت جواب برابر 1101 مىشد. در ضمن على كوجولو يكى بازىى جديد ياد گرفته و بسيار هيجان زده است.
| او تمام رشتههاى از 0 , 1 به طول 4 (به استثناى رشتهى 0000) را روى يكى صفحهى كاغذ نوشته است (جمعن 15 رشته)، هدف او از اين بازى اين است كه اين رشتهها را به 4 دسته طورى تقسيم كند

 تقسيمبندى امتحان كرده است ولى نتوانسته است اين مساله را حل كند و اكنون از شما مى خواهد كه
به او كمكى كنيد.

اين 4 دستهبندى را به روى برگهى پاسخ خود بنويسيد.
ب مادر على كوحولو به او گفته كه بلد است سوال قسمت قبل را با 3 دسته حل كند (يعنى 15 رشته را به
 طول $4 n$ به استثناى رشتهى 0 0 0 0 0 ا به $3 n$ دسته طورى تقسيم كرد كه جمع هيـج دو عدد از يى دسته (به روش على كوحولو) در هم آن دسته نباشد.
 به گونهيى پر كنيم كه هر عدد دقيقن در يك خان خانه نوشته شود و و مجموع اع اعداد n سطر با سطرهاى ديگر يكسان باشد. مثلن براى n=3، در جد جدول زير كه از اعداد 1 تا 9 ير شده است
 " روت براى آزمون نوبت يكم ه، و براى آزمون نوبت دوم ه ساعت بود. "
 با نام "لامیها" داراى 20 (10، 10)، مسالهى 9 با با نام "جدول رنگى" داراى 25، مسالهى

به عنوان مثال، به جدول زير توجه كنيد:

شمارمى صندوقحه	عدد نوشته شدهى زير صندوقحهِ	تعداد اوليهى ياقوتها
1	2	6
2	2	8
3	1	3

 شده است 8 ياقوت در هماين صندوقچهه باقى مىماند. سيس اگر در صندوقهیهى شمارْى 1 را با باز كنيم،

 شمارْى 1 را باز كنيم ياقوتى نمى بينيم.

 ثابت كنيد با انجام عمل فوق (به. تعداد دلخواه) میتوان از تعداد كل ياقوتهانها مطلع شد.

8	6	1
9	4	2
7	5	3

الا بیتوانيد اين كار را براى ساير مقادير فرد n انجام دهيد؟ شما بايد در جواب يك روش كلى براى ير كردن

(ر) دإربی n قطر مختلف رسم شده است. هر قطر دو نقطهى انتهايى دارد (نقاط تلاقىى قطر با دايره)، در مجموع 2n نقطهى انتهايى داريم. يكى مجموعدى متعادل مجموعهيى از n نقطهى انتهايى است
 EALII
 .
 ر ر لـك كل ديكر مجموعهى مشخص شده متعادل نيست، حون مركز دايره درون 4ضلعى قرار ندارد.

 اعداد نوشته شده در زير صندوقحجهها را بخوانيم.

یاسخهاى نوبت يكم

مرحلهى دوم سيزدهمين الميياد

ا
| يكى ازد دستهبندىها كه در واقع دستهبندى به 3 دسته است، به گُونهى زير میى باشد.
$\},\{0011,0110,1010\},\{1111,1100,1001,1010\}$,
$\{0001,0010,0100,1000,0111,1011,1101,1110\}$
ب دو 4n+4 4

 براى اين رشتهها به 3n دسته انجام مىدهد. يس با روى هم 3n+3 3n دسته كار انجام شد. r r
$n+1$
$n-0$
$2 n+\frac{3 n+1}{2}+0$
$n+2$
n-2
$2 n+\frac{3 n+1}{2}+1$
$n+\frac{3 n+1}{2}$
$n-2\left(\frac{3 n+1}{2}-1\right)$
$2 n+\frac{3 n+1}{2} \frac{3 n+1}{2}-1$
$n+\frac{3 n+1}{2}+1$
$n-1$
$2 n+1$
$n+\frac{3 n+1}{2}+2$
n-3
$2 n+2$
$n+3 n+1+3 n+1-1$
$n-2(\underline{3 n+1}-1)$

d

هرسشهاى نوبت دوم

مرحلهى دوم سيزدهمين الميياد

 مىتواند تهيه كند ثابت است و اين تعداد بستگى به وضعيت للمبها در انتيا انهاى روز ندارد و فقط به

$$
\begin{aligned}
& \text { نحوهى سيمكشىى آوريل وابسته است } \\
& \text { ب ثابت كنيد كه اين تعداد توانى از } 2 \text { است. }
\end{aligned}
$$

(

چون اعداد به صورت الكترونيكى در حافظهها ذخيره مىشوند كارمندان به هيج روشى نمى دتوانتند از مقدار
 نمىتوانند كارت خود را در اختيار همكارانش بگذارد يا به دستگاه مقايسهگر ديخران وارد كند.

سمت راستترين كارتخوان ذخيره شده باشد.

يك شيوه طراحى كنيد كه اگر كارمندان بر اساس آن قبل از شروع بازى هم آهنگ شوند

كارى و با كدام كارتخوان انجام مىدهد.

 منتقل شود.

در هر مرحله از بازى يكى از دو كار زير را مىتوان انجام داد.
I. سارا مىتواند يك سطر از جدول را انتخاب كند وتعدادى از مهرههاى خود را در خانههاى دل دخواهى از
آن سطر قرار دهد.

「. . دارا مىتواند يك ستون را انتخاب كند و همهى مهرههاى آن ستون را بردارد. شرط مهم بازى آن است كه در هيج زمانى تعداد مهرههاى موجود در صفحه نبايد از 36 عدد بيشتر شود.

> بديهى است كه در يك زمان نمىتوان بيش از يك مهره در يك خانه قرار داد.

 كه لزومى ندارد كه سارا و دارا يكى در ميان بازیى كنتد.
(4) ابر اين هر خانهى جدول دقيقن با سه خانهى ديخر مجاور است.)

 الراي هـال در زير يکى جدول مجموعهيى با دو جدول رنگیى به دست آمده از آن نمايش داده شده است.

1	3	1	2					
3	2	3	1	\Leftarrow	$\{1,2\}$	$\{1,2\}$	$\{1,2\}$	$\{2,3\}$
:---	:---	:---	:---					
$\{1,3\}$	$\{1,2\}$	$\{2,3\}$	$\{1,2\}$	\Rightarrow	2	3	1	3
:---	:---	:---	:---					
1	2	3	2					

S4 جهدل مجموعهيى داده شده است كه در آن هيج دو خانهى مجاورى وجود ندارند كه مجموعههاى

 . . " عدد موجود در حافظلى كارتخوان نوشته مى شودو.
"

 (ر)

 (1)
 إتصكاه كارتخوان در هر مرحله تتها مىتواند مورد استفادمى يك كارمند قرار گيرد. اما هر كارمند مىتواند

از 230 تا 240 باشد،
كمتر از 230 باشد.
راء حلههاى خود را به طور خلاصه توضيح دهيد و مانند شكل فوق آن را نمايش دهيد.


```
    x
x
x
x
x
x
    \(\begin{array}{llll}x & x & x \\ x & x & x\end{array}\)
    \(\begin{array}{llll}x & x & x & x\end{array}\)
    \(x \times x\)
```



```
    \(-\frac{x}{x} \frac{x}{x} \frac{x}{x} \frac{x}{x} \frac{x}{x}-\frac{x}{x} \frac{x}{x} \frac{x}{x}\)
        xXxXxx
            \begin{tabular}{l|l|l|}
\(x\) \\
\(x\)
\end{tabular}
```


هرحلهى دوم سيزدهمين المبياد IVA

[1, 2, 3] , $]$

)
هس از 100 گام، هر فرد عددهاى هملى 99 كارتخوان ديگر را با عدد كارتخوان آغازين سنجيده است.

 .
^ A | با 8 حركت سارا آرايشى به گونهى

x
$\mathrm{x} \times \mathrm{x}$
x

$x \times x$
$x y y y$
xxxx
$\mathrm{xx} x \mathrm{x}$

xxxxxx
xxxxxx
x xxxxxxx


```
                                    ب ب
```

 \(\mathrm{xx} \times \mathrm{xx}\)
 \(\mathrm{x} x \mathrm{xXx}\)
 $\mathrm{x} \mathrm{x} \times \mathrm{x} x \mathrm{x}$
$x \times x \times x x$
$\mathrm{x} x \mathrm{x} x \mathrm{x}$
ازاين يس سارا مانتد قسمت ييش در هر گام 8 مهره میگذارد و دارا ستون سوى چهی را برمىدارد. يس از

فهرسـتها

	rr	براهمهويسى
شطارش، استقرا	If	1
	ro	برناهونيسى
（	r9	بركاهونويسى
ارإيى ساختار	rv	براهماهويسى
استقرا، اريايهى ساختار	rı	برباهنويسىى．
	ra	
منطّ، اريايهى ساختار	ro	
俍	r	براكهاهويسى
楽全	rr	بازكّكت
الكُوريتهر، نايش بايبيا	rr	شمارش
	rp	اراريكى ساختار
الحوريته، نايش بايهى	ro	，
برهان خلف، اصل ديريكله．	r9	
	rv	بازكّكت
برناهنونيسى	r	براكهاهويسى
俍	rq	
اصل ديريكله، بران خلف	po	
榢全	P1	ارايكى ساختار، دستبندي، استقا
Hers	Pr	ارإيكى ساختار
He	Pr	إرايهى ساختار
S	pp	

（\＄9 شمارش، تناظر، همهايخى

 lor
 lof
 109 109 يافتن كران و ارايهى ساختار loV
 109 109。 11 （ 11 استقرا
نمايش پا

（ 1 FF
110 110
119 الرايهى ساختار اراريهى ساختار 1IV
11^1 الگوريتم

نگر（
إ اصل ديريكله، استقرا
برهان خلف
｜l｜IYY اصل ديريكله
全全 يا يا
الگّ الگوريتم
｜rه إ الگوريت

全全 VY VY全 Vr Vr

شمردن، تناظر WF

食 VV
الگُوريتم، رشتهها VA

（1）استقرا، اصل فرين
نگرمى بازیها، ارايهى ساختار Ar

رنگآميزى، همهايگى NF
NQ ارايهى ساختار
Nя
تناظر AV
MA ارايهى ساختار
199
和
｜ 91
شا شمردن
ج اصل فرين
备

ارايهى ساختار \quad QV
91 91 استقرا

فهرستها

ارإيى ساختار
？\＄برهان خلف، اصل فرين، استقر｜
\＄الكُوريتم، نمايش ثايهيى
？
\＄نمايش بايهيى، برهان خلف
الكُوريتم
领畀
رشتهها، ارايهى ساختار
\＄OF شمارش، دستهبندى
شارشا شا
\＄إ اصل ناوردايى
\＄الخَّوريتم، ارايهى ساختار

\＆

\＄الگُوريتم، برهان خلف، اصل ديريكله
\＄الخَريتم، اصل ناوردايى

\＄
｜
شمارش، ارايهى ساختار \＄V
\＄يافتن كران و ارايهى ساختار
全
اصل ناوردايی، نگرْى گرافها

فـرسـت گونتيى

I استقرا

190، 14\%
 109، (14)

Pr, rr iro (ID)

 برهان خلف צא،

فهرسـت سـختى

St Ure

ry

رشتهها رهr
lor ar Ve Vf شمردن ar

 amil Elon Fighols

ISBN 964-94685-5-2 Fivilitil

